On the order three Brauer classes for cubic surfaces
Andreas-Stephan Elsenhans ; Jörg Jahnel
Open Mathematics, Tome 10 (2012), p. 903-926 / Harvested from The Polish Digital Mathematics Library

We describe a method to compute the Brauer-Manin obstruction for smooth cubic surfaces over ℚ such that Br(S)/Br(ℚ) is a 3-group. Our approach is to associate a Brauer class with every ordered triplet of Galois invariant pairs of Steiner trihedra. We show that all order three Brauer classes may be obtained in this way. To show the effect of the obstruction, we give explicit examples.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:269060
@article{bwmeta1.element.doi-10_2478_s11533-012-0042-6,
     author = {Andreas-Stephan Elsenhans and J\"org Jahnel},
     title = {On the order three Brauer classes for cubic surfaces},
     journal = {Open Mathematics},
     volume = {10},
     year = {2012},
     pages = {903-926},
     zbl = {1276.11112},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0042-6}
}
Andreas-Stephan Elsenhans; Jörg Jahnel. On the order three Brauer classes for cubic surfaces. Open Mathematics, Tome 10 (2012) pp. 903-926. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0042-6/

[1] Buckley A., Košir T., Determinantal representations of smooth cubic surfaces, Geom. Dedicata, 2007, 125, 115–140 http://dx.doi.org/10.1007/s10711-007-9144-x | Zbl 1117.14038

[2] Cartan H., Eilenberg S., Homological Algebra, Princeton University Press, Princeton, 1956

[3] Cassels J.W.S., Guy M.J.T., On the Hasse principle for cubic surfaces, Mathematika, 1966, 13, 111–120 http://dx.doi.org/10.1112/S0025579300003879 | Zbl 0151.03405

[4] Clebsch A., Die Geometrie auf den Flächen dritter Ordnung, J. Reine Angew. Math., 1866, 1866(65), 359–380 http://dx.doi.org/10.1515/crll.1866.65.359

[5] Colliot-Thélène J.-L., Kanevsky D., Sansuc J.-J., Arithmétique des surfaces cubiques diagonales, In: Diophantine Approximation and Transcendence Theory, Bonn, May–June, 1985, Lecture Notes in Math., 1290, Springer, Berlin, 1987, 1–108 http://dx.doi.org/10.1007/BFb0078705

[6] Cremona L., Sulle ventisette rette della superficie del terzo ordine, Istit. Lombardo Accad. Sci. Lett. Rend. A, 1870, 3, 209–219

[7] Dolgachev I.V., Classical Algebraic Geometry, Cambridge University Press (in press), available at http://www.math.lsa.umich.edu/_idolga/CAG.pdf | Zbl 1252.14001

[8] Elsenhans A.-S., Jahnel J., Experiments with general cubic surfaces, In: Algebra, Arithmetic, and Geometry: in Honor of Yu.I. Manin, 1, Progr. Math., 269, Birkhäuser, Boston, 2007, 637–653

[9] Elsenhans A.-S., Jahnel J., On the Brauer-Manin obstruction for cubic surfaces, J. Comb. Number Theory, 2010, 2(2), 107–128 | Zbl 1245.14020

[10] Elsenhans A.-S., Jahnel J., Cubic surfaces with a Galois invariant pair of Steiner trihedra, Int. J. Number Theory, 2011, 7(4), 947–970 http://dx.doi.org/10.1142/S1793042111004253 | Zbl 1233.11073

[11] Elsenhans A.-S., Jahnel J., On the quasi group of a cubic surface over a finite field, J. Number Theory (in press)

[12] Hartshorne R., Algebraic Geometry, Grad. Texts in Math., 52, Springer, New York-Heidelberg, 1977

[13] Henderson A., The Twenty-Seven Lines upon the Cubic Surface, Hafner, New York, 1960 | Zbl 42.0661.01

[14] Jahnel J., More cubic surfaces violating the Hasse principle, J. Théor. Nombres Bordeaux, 2011, 23(2), 471–477 http://dx.doi.org/10.5802/jtnb.772 | Zbl 1233.11033

[15] Kresch A., Tschinkel Yu., On the arithmetic of del Pezzo surfaces of degree 2, Proc. London Math. Soc., 2004, 89(3), 545–569 http://dx.doi.org/10.1112/S002461150401490X | Zbl 1075.14019

[16] Kunyavskiĭ B.È., Skorobogatov A.N., Tsfasman M.A., Del Pezzo Surfaces of Degree Four, Mém. Soc. Math. France (N.S.), 37, Société Mathématique de France, Marseille, 1989 | Zbl 0705.14039

[17] Manin Yu.I., Cubic Forms: Algebra, Geometry, Arithmetic, North-Holland Math. Library, 4, North-Holland/Elsevier, Amsterdam-London/New York, 1974

[18] Mordell L.J., On the conjecture for the rational points on a cubic surface, J. London Math. Soc., 1965, 40, 149–158 http://dx.doi.org/10.1112/jlms/s1-40.1.149 | Zbl 0124.02605

[19] Neukirch J., Klassenkörpertheorie, 2nd ed., Springer-Lehrbuch, Springer, Berlin, 2011 http://dx.doi.org/10.1007/978-3-642-17325-7

[20] Peyre E., Hauteurs et mesures de Tamagawa sur les variétés de Fano, Duke Math. J., 1995, 79(1), 101–218 http://dx.doi.org/10.1215/S0012-7094-95-07904-6

[21] Peyre E., Tschinkel Yu., Tamagawa numbers of diagonal cubic surfaces, numerical evidence, Math. Comp., 2001, 70(233), 367–387 http://dx.doi.org/10.1090/S0025-5718-00-01189-3 | Zbl 0961.14012

[22] Schläfli L., An attempt to determine the twenty-seven lines upon a surface of the third order, and to divide such surfaces into species in reference to the reality of the lines upon the surface, The Quarterly Journal of Pure and Applied Mathematics, 1858, 2, 110–120

[23] Serre J.-P., Local class field theory, In: Algebraic Number Theory, Brighton, 1965, Thompson, Washington, 1967, 128–161

[24] Steiner J., Über die Flächen dritten Grades, J. Reine Angew. Math., 1857, 53, 133–141 http://dx.doi.org/10.1515/crll.1857.53.133

[25] Swinnerton-Dyer H.P.F., Two special cubic surfaces, Mathematika, 1962, 9, 54–56 http://dx.doi.org/10.1112/S0025579300003090 | Zbl 0103.38302

[26] Swinnerton-Dyer H.P.F., Universal equivalence for cubic surfaces over finite and local fields, In: Symposia Mathematica, 24, Rome, April 9–14, 1979, Academic Press, London-New York, 1981, 111–143

[27] Swinnerton-Dyer P., The Brauer group of cubic surfaces, Math. Proc. Cambridge Philos. Soc., 1993, 113(3), 449–460 http://dx.doi.org/10.1017/S0305004100076106 | Zbl 0804.14018

[28] Tate J.T., Global class field theory, In: Algebraic Number Theory, Brighton, 1965, Thompson, Washington, 1967, 162–203 | Zbl 1179.11041