Odd H-depth and H-separable extensions
Lars Kadison
Open Mathematics, Tome 10 (2012), p. 958-968 / Harvested from The Polish Digital Mathematics Library

Let C n(A,B) be the relative Hochschild bar resolution groups of a subring B ⊆ A. The subring pair has right depth 2n if C n+1(A,B) is isomorphic to a direct summand of a multiple of C n(A,B) as A-B-bimodules; depth 2n + 1 if the same condition holds only as B-B-bimodules. It is then natural to ask what is defined if this same condition should hold as A-A-bimodules, the so-called H-depth 2n − 1 condition. In particular, the H-depth 1 condition coincides with A being an H-separable extension of B. In this paper the H-depth of semisimple subalgebra pairs is derived from the transpose inclusion matrix, and for QF extensions it is derived from the odd depth of the endomorphism ring extension. For general extensions characterizations of H-depth are possible using the H-equivalence generalization of Morita theory.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:269169
@article{bwmeta1.element.doi-10_2478_s11533-012-0013-y,
     author = {Lars Kadison},
     title = {Odd H-depth and H-separable extensions},
     journal = {Open Mathematics},
     volume = {10},
     year = {2012},
     pages = {958-968},
     zbl = {1267.16002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0013-y}
}
Lars Kadison. Odd H-depth and H-separable extensions. Open Mathematics, Tome 10 (2012) pp. 958-968. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0013-y/

[1] Boltje R., Danz S., Külshammer B., On the depth of subgroups and group algebra extensions, J. Algebra, 2011, 335, 258–281 http://dx.doi.org/10.1016/j.jalgebra.2011.03.019 | Zbl 1250.20001

[2] Boltje R., Külshammer B., On the depth 2 condition for group algebra and Hopf algebra extensions, J. Algebra, 2010, 323(6), 1783–1796 http://dx.doi.org/10.1016/j.jalgebra.2009.11.043 | Zbl 1200.16035

[3] Boltje R., Külshammer B., Group algebra extensions of depth one, Algebra Number Theory, 2011, 5(1), 63–73 http://dx.doi.org/10.2140/ant.2011.5.63 | Zbl 1236.20001

[4] Brzezinski T., Wisbauer R., Corings and Comodules, London Math. Soc. Lecture Note Ser., 309, Cambridge University Press, 2003

[5] Burciu S., On some representations of the Drinfel’d double, J. Algebra, 2006, 296(2), 480–504 http://dx.doi.org/10.1016/j.jalgebra.2005.09.004 | Zbl 1094.16025

[6] Burciu S., Depth one extensions of semisimple algebras and Hopf subalgebras, preprint available at http://arxiv.org/abs/1103.0685 | Zbl 1296.16028

[7] Burciu S., Kadison L., Külshammer B., On subgroup depth, Int. Electron. J. Algebra, 2011, 9, 133–166 | Zbl 1266.20001

[8] Danz S., The depth of some twisted group algebra extensions, Comm. Algebra, 2011, 39(5), 1631–1645 http://dx.doi.org/10.1080/00927871003738980 | Zbl 1244.16016

[9] Fritzsche T., The depth of subgroups of PSL(2,q), J. Algebra, 2011, 349, 217–233 http://dx.doi.org/10.1016/j.jalgebra.2011.10.017

[10] Hirata K., Some types of separable extensions of rings, Nagoya Math. J., 1968, 33, 107–115 | Zbl 0179.05804

[11] Hirata K., Sugano K., On semisimple extensions and separable extensions over non commutative rings, J. Math. Soc. Japan, 1966, 18(4), 360–373 http://dx.doi.org/10.2969/jmsj/01840360 | Zbl 0178.36802

[12] Hochschild G., Relative homological algebra, Trans. Amer. Math. Soc., 1956, 82, 246–269 http://dx.doi.org/10.1090/S0002-9947-1956-0080654-0 | Zbl 0070.26903

[13] Kac G.I., Paljutkin V.G., Finite ring groups, Trudy Moskov. Mat. Obshch., 1966, 15, 224–261 (in Russian)

[14] Kadison L., New Examples of Frobenius Extensions, Univ. Lecture Ser., 14, American Mathematical Society, Providence, 1999 | Zbl 0929.16036

[15] Kadison L., Note on Miyashita-Ulbrich action and H-separable extension, Hokkaido Math. J., 2001, 30(3), 689–695 | Zbl 1005.16036

[16] Kadison L., Hopf algebroids and H-separable extensions, Proc. Amer. Math. Soc., 2003, 131(10), 2993–3002 http://dx.doi.org/10.1090/S0002-9939-02-06876-4 | Zbl 1033.16017

[17] Kadison L., Depth two and the Galois coring, In: Noncommutative Geometry and Representation Theory in Mathematical Physics, Karlstad, July 5–10, 2004, Contemp. Math., 391, American Mathematical Society, Providence, 2005, 149–156 http://dx.doi.org/10.1090/conm/391/07325

[18] Kadison L., Finite depth and Jacobson-Bourbaki correspondence, J. Pure Appl. Algebra, 2008, 212(7), 1822–1839 http://dx.doi.org/10.1016/j.jpaa.2007.11.007

[19] Kadison L., Infinite index subalgebras of depth two, Proc. Amer. Math. Soc., 2008, 136(5), 1523–1532 http://dx.doi.org/10.1090/S0002-9939-08-09077-1 | Zbl 1189.16027

[20] Kadison L., Subring depth, Frobenius extensions and their towers, unpublished manuscript | Zbl 1280.16026

[21] Kadison L., Külshammer B., Depth two, normality and a trace ideal condition for Frobenius extensions, Comm. Algebra, 2006, 34(9), 3103–3122 http://dx.doi.org/10.1080/00927870600650291 | Zbl 1115.16020

[22] Kadison L., Szlachányi K., Bialgebroid actions on depth two extensions and duality, Adv. Math., 2003, 179(1), 75–121 http://dx.doi.org/10.1016/S0001-8708(02)00028-2 | Zbl 1049.16022

[23] Masuoka A., Semisimple Hopf algebras of dimension 6, 8, Israel J. Math., 1995, 92(1–3), 361–373 http://dx.doi.org/10.1007/BF02762089 | Zbl 0839.16036

[24] Morita K., The endomorphism ring theorem for Frobenius extensions, Math. Z., 1967, 102, 385–404 http://dx.doi.org/10.1007/BF01111076 | Zbl 0162.33803

[25] Müller B., Quasi-Frobenius Erweiterungen, Math. Z., 1964, 85, 345–368 http://dx.doi.org/10.1007/BF01110680 | Zbl 0203.04403