Transitive conformal holonomy groups
Jesse Alt
Open Mathematics, Tome 10 (2012), p. 1710-1720 / Harvested from The Polish Digital Mathematics Library

For (M, [g]) a conformal manifold of signature (p, q) and dimension at least three, the conformal holonomy group Hol(M, [g]) ⊂ O(p + 1, q + 1) is an invariant induced by the canonical Cartan geometry of (M, [g]). We give a description of all possible connected conformal holonomy groups which act transitively on the Möbius sphere S p,q, the homogeneous model space for conformal structures of signature (p, q). The main part of this description is a list of all such groups which also act irreducibly on ℝp+1,q+1. For the rest, we show that they must be compact and act decomposably on ℝp+1,q+1, in particular, by known facts about conformal holonomy the conformal class [g] must contain a metric which is either Einstein (if p = 0 or q = 0) or locally isometric to a so-called special Einstein product.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:269749
@article{bwmeta1.element.doi-10_2478_s11533-012-0009-7,
     author = {Jesse Alt},
     title = {Transitive conformal holonomy groups},
     journal = {Open Mathematics},
     volume = {10},
     year = {2012},
     pages = {1710-1720},
     zbl = {1278.53045},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0009-7}
}
Jesse Alt. Transitive conformal holonomy groups. Open Mathematics, Tome 10 (2012) pp. 1710-1720. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-012-0009-7/

[1] Alt J., Fefferman Constructions in Conformal Holonomy, PhD thesis, Humboldt University, Berlin, 2008

[2] Alt J., On quaternionic contact Fefferman spaces, Differential Geom. Appl., 2010, 28(4), 376–394 http://dx.doi.org/10.1016/j.difgeo.2010.04.001 | Zbl 1196.53031

[3] Alt J., Notes of “Transitive conformal holonomy groups”, available at http://sites.google.com/site/jmaltmath/ | Zbl 1278.53045

[4] Armstrong S., Definite signature conformal holonomy: a complete classification, J. Geom. Phys., 2007, 57(10), 2024–2048 http://dx.doi.org/10.1016/j.geomphys.2007.05.001 | Zbl 05201910

[5] Armstrong S., Leitner F., Decomposable conformal holonomy in Riemannian signature, Math. Nachr. (in press), DOI: 10.1002/mana.201000055 | Zbl 1246.53064

[6] Bailey T.N., Eastwood M.G., Gover A.R., Thomas’s structure bundle for conformal, projective and related structures, Rocky Mountain J. Math., 1994, 24(4), 1191–1217 http://dx.doi.org/10.1216/rmjm/1181072333 | Zbl 0828.53012

[7] Bryant R.L., Conformal geometry and 3-plane fields on 6-manifolds, Developments of Cartan Geometry and Related Mathematical Problems, Kyoto, October 24–27, 2005, RIMS Symposium Proceedings, 1502, Kyoto University, Kyoto, 2006, 1–15

[8] Čap A., Gover A.R., CR-tractors and the Fefferman space, Indiana Univ. Math. J., 2008, 57(5), 2519–2570 http://dx.doi.org/10.1512/iumj.2008.57.3359 | Zbl 1162.32019

[9] Čap A., Gover A.R., A holonomy characterisation of Fefferman spaces, Ann. Glob. Anal. Geom., 2010, 38(4), 399–412 http://dx.doi.org/10.1007/s10455-010-9220-6 | Zbl 1298.53041

[10] Čap A., Gover A.R., Hammerl M., Holonomy reductions of Cartan geometries and curved orbit decompositions, preprint available at http://arxiv.org/abs/1103.4497 | Zbl 1298.53042

[11] Čap A., Slovák J., Parabolic Geometries. I, Math. Surveys Monogr., 154, American Mathematical Society, Providence, 2009 | Zbl 1183.53002

[12] Di Scala A.J., Leistner T., Connected subgroups of SO(2; n) acting irreducibly on R2;n , Israel J. Math., 2011, 182, 103–121 http://dx.doi.org/10.1007/s11856-011-0025-5 | Zbl 1222.22008

[13] Di Scala A.J., Leistner T., Neukirchner T., Geometric applications of irreducible representations of Lie groups, In: Handbook of Pseudo-Riemannian Geometry and Supersymmetry, IRMA Lect. Math. Theor. Phys., 16, European Mathematical Society, Zürich, 2010, 629–651 http://dx.doi.org/10.4171/079-1/18 | Zbl 1205.53053

[14] Di Scala A.J., Olmos C., The geometry of homogeneous submanifolds of hyperbolic space, Math. Z., 2001, 237(1), 199–209 http://dx.doi.org/10.1007/PL00004860 | Zbl 0997.53051

[15] Fefferman C.L., Monge-Ampère equations, the Bergman kernel and geometry of pseudoconvex domains, Ann. of Math., 1976, 103(2), 395–416 http://dx.doi.org/10.2307/1970945 | Zbl 0322.32012

[16] Graham C.R., Willse T., Parallel tractor extension and ambient metrics of holonomy split G 2, preprint available at http://arxiv.org/abs/1109.3504

[17] Hammerl M., Sagerschnig K., Conformal structures associated to generic rank 2 distributions on 5-manifolds - characterization and Killing-field decomposition, SIGMA Symmetry Integrability Geom. Methods Appl., 2009, 5, #081 | Zbl 1191.53016

[18] Hammerl M., Sagerschnig K., The twistor spinors of generic 2- and 3-distributions, Ann. Global Anal. Geom., 2011, 39(4), 403–425 http://dx.doi.org/10.1007/s10455-010-9240-2 | Zbl 1229.53058

[19] Iwahori N., On real irreducible representations of Lie algebras, Nagoya Math. J., 1959, 14, 59–83 | Zbl 0101.02401

[20] Kamerich B.N.P., Transitive Transformation Groups on Products of Two Spheres, Krips Repro, Meppel, 1977

[21] Knapp A.W., Lie Groups Beyond an Introduction, Progr. Math., 140, Birkhäuser, Boston, 1996 | Zbl 0862.22006

[22] Kramer L., Homogeneous Spaces, Tits Buildings, and Isoparametric Hypersurfaces, Mem. Amer. Math. Soc., 158(752), American Mathematical Society, Providence, 2002 | Zbl 1027.57002

[23] Leistner T., Conformal holonomy of C-spaces, Ricci-flat and Lorentzian manifolds, Differential Geom. Appl., 2006, 24(5), 458–478 http://dx.doi.org/10.1016/j.difgeo.2006.04.008 | Zbl 1109.53052

[24] Leitner F., A remark on unitary conformal holonomy, In: Symmetries and Overdetermined Systems of Partial Differential Equations, Minneapolis, July 17-August 4, 2006, IMA Vol. Math. Appl., 144, Springer, New York, 2008, 445–460 http://dx.doi.org/10.1007/978-0-387-73831-4_23

[25] Leitner F., Normal conformal Killing forms, preprint available at http://arxiv.org/abs/math/0406316

[26] Montgomery D., Simply connected homogeneous spaces, Proc. Amer. Math Soc., 1950, 1(4), 467–469 http://dx.doi.org/10.1090/S0002-9939-1950-0037311-6 | Zbl 0041.36309

[27] Nurowski P., Differential equations and conformal structures, J. Geom. Phys., 2005, 55(1), 19–49 http://dx.doi.org/10.1016/j.geomphys.2004.11.006 | Zbl 1082.53024

[28] Onishchik A.L., Topology of Transitive Transformation Groups, Johann Ambrosius Barth, Leipzig, 1994 | Zbl 0796.57001

[29] Onishchik A.L., Vinberg E.B., Lie Groups and Algebraic Groups, Springer Ser. Soviet Math., Springer, Berlin-Heidelberg, 1990 | Zbl 0722.22004