Hilbert volume in metric spaces. Part 1
Misha Gromov
Open Mathematics, Tome 10 (2012), p. 371-400 / Harvested from The Polish Digital Mathematics Library

We introduce a notion of Hilbertian n-volume in metric spaces with Besicovitch-type inequalities built-in into the definitions. The present Part 1 of the article is, for the most part, dedicated to the reformulation of known results in our terms with proofs being reduced to (almost) pure tautologies. If there is any novelty in the paper, this is in forging certain terminology which, ultimately, may turn useful in an Alexandrov kind of approach to singular spaces with positive scalar curvature [Gromov M., Plateau-hedra, Scalar Curvature and Dirac Billiards, in preparation].

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:269311
@article{bwmeta1.element.doi-10_2478_s11533-011-0143-7,
     author = {Misha Gromov},
     title = {Hilbert volume in metric spaces. Part 1},
     journal = {Open Mathematics},
     volume = {10},
     year = {2012},
     pages = {371-400},
     zbl = {1243.53077},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0143-7}
}
Misha Gromov. Hilbert volume in metric spaces. Part 1. Open Mathematics, Tome 10 (2012) pp. 371-400. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0143-7/

[1] Afsari B., Riemannian L p center of mass: existence, uniqueness, and convexity, Proc. Amer. Math. Soc., 2011, 139(2), 655–673 http://dx.doi.org/10.1090/S0002-9939-2010-10541-5 | Zbl 1220.53040

[2] Almgren F.J., Jr., Existence and regularity almost everywhere of solutions to elliptic variational problems among surfaces of varying topological type and singularity structure, Ann. of Math., 1968, 87(2), 321–391 http://dx.doi.org/10.2307/1970587 | Zbl 0162.24703

[3] Ambrosio L., Kirchheim B., Currents in metric spaces, Acta Math., 2000, 185(1), 1–80 http://dx.doi.org/10.1007/BF02392711 | Zbl 0984.49025

[4] Babenko I.K., Asymptotic volume of tori and the geometry of convex bodies, Mat. Zametki, 1988, 44(2), 177–190 (in Russian) | Zbl 0653.52008

[5] Breuillard E., Geometry of locally compact groups of polynomial growth and shape of large balls, preprint available at http://arxiv.org/abs/0704.0095 | Zbl 1310.22005

[6] Burago D.Yu., Periodic metrics, In: Representation Theory and Dynamical Systems, Adv. Soviet Math., 9, American Mathematical Society, Providence, 1992, 205–210 | Zbl 0762.53023

[7] Burago D., Ivanov S., Riemannian tori without conjugate points are flat, Geom. Funct. Anal., 1994, 4(3), 259–269 http://dx.doi.org/10.1007/BF01896241 | Zbl 0808.53038

[8] Burago D., Ivanov S., On asymptotic volume of tori, Geom. Funct. Anal., 1995, 5(5), 800–808 http://dx.doi.org/10.1007/BF01897051 | Zbl 0846.53043

[9] Federer H., Geometric Measure Theory, Grundlehren Math. Wiss., 153, Springer, New York, 1969 | Zbl 0176.00801

[10] Gromov M., Filling Riemannian manifolds, J. Differential Geom., 1983, 18(1), 1–147 | Zbl 0515.53037

[11] Gromov M., Partial Differential Relations, Ergeb. Math. Grenzgeb., 9, Springer, Berlin, 1986 | Zbl 0651.53001

[12] Gromov M., Metric Structures for Riemannian and Non-Riemannian Spaces, Progr. Math., Birkhäuser, Boston, 1999

[13] Gromov M., Topological invariants of dynamical systems and spaces of holomorphic maps. I, Math. Phys. Anal. Geom., 1999, 2(4), 323–415 http://dx.doi.org/10.1023/A:1009841100168

[14] Gromov M., Spaces and questions, Geom. Funct. Anal., 2000, Special Volume (I), 118–161 | Zbl 1006.53035

[15] Gromov M., Manifolds: Where do we come from? What are we? Where are we going, preprint available at http://www.ihes.fr/_gromov/PDF/manifolds-Poincare.pdf | Zbl 1304.57006

[16] Gromov M., Super stable Kählerian horseshoe?, preprint available at http://www.ihes.fr/_gromov/PDF/horse-shoejan6-2011.pdf | Zbl 1319.32025

[17] Gromov M., Plateau-hedra, scalar curvature and Dirac billiards, in preparation

[18] Grove K., Karcher H., How to conjugate C 1-close group actions, Math. Z., 1973, 132(1), 11–20 http://dx.doi.org/10.1007/BF01214029 | Zbl 0245.57016

[19] Karcher H., Riemannian center of mass and mollifier smoothing, Comm. Pure Appl. Math., 1977, 30(5), 509–541 http://dx.doi.org/10.1002/cpa.3160300502 | Zbl 0354.57005

[20] Krat S.A., On pairs of metrics invariant under a cocompact action of a group, Electron. Res. Announc. Amer. Math. Soc., 2001, 7, 79–86 http://dx.doi.org/10.1090/S1079-6762-01-00097-X | Zbl 0983.51009

[21] Lang U., Schroeder V., Kirszbraun’s theorem and metric spaces of bounded curvature, Geom. Funct. Anal., 1997, 7(3), 535–560 http://dx.doi.org/10.1007/s000390050018 | Zbl 0891.53046

[22] Pansu P., Croissance des boules et des géodésiques fermées dans les nilvariétés, Ergodic Theory Dynam. Systems, 1983, 3(3), 415–445 http://dx.doi.org/10.1017/S0143385700002054 | Zbl 0509.53040

[23] Sormani C., Wenger S., Weak convergence of currents and cancellation, Calc. Var. Partial Differential Equations, 2010, 38(1–2), 183–206 http://dx.doi.org/10.1007/s00526-009-0282-x | Zbl 1192.53049

[24] Wenger S., Compactness for manifolds and integral currents with bounded diameter and volume, Calc. Var. Partial Differential Equations, 2011, 40(3–4), 423–448 http://dx.doi.org/10.1007/s00526-010-0346-y