K-quasiderivations
Caleb Emmons ; Mike Krebs ; Anthony Shaheen
Open Mathematics, Tome 10 (2012), p. 824-834 / Harvested from The Polish Digital Mathematics Library

A K-quasiderivation is a map which satisfies both the Product Rule and the Chain Rule. In this paper, we discuss several interesting families of K-quasiderivations. We first classify all K-quasiderivations on the ring of polynomials in one variable over an arbitrary commutative ring R with unity, thereby extending a previous result. In particular, we show that any such K-quasiderivation must be linear over R. We then discuss two previously undiscovered collections of (mostly) nonlinear K-quasiderivations on the set of functions defined on some subset of a field. Over the reals, our constructions yield a one-parameter family of K-quasiderivations which includes the ordinary derivative as a special case.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:269700
@article{bwmeta1.element.doi-10_2478_s11533-011-0140-x,
     author = {Caleb Emmons and Mike Krebs and Anthony Shaheen},
     title = {K-quasiderivations},
     journal = {Open Mathematics},
     volume = {10},
     year = {2012},
     pages = {824-834},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0140-x}
}
Caleb Emmons; Mike Krebs; Anthony Shaheen. K-quasiderivations. Open Mathematics, Tome 10 (2012) pp. 824-834. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0140-x/

[1] Adler I., Composition rings, Duke Math. J., 1962, 29(4), 607–623 http://dx.doi.org/10.1215/S0012-7094-62-02961-7 | Zbl 0111.02103

[2] Barbeau E.J., Remarks on an arithmetic derivative, Canad. Math. Bull., 1961, 4, 117–122 http://dx.doi.org/10.4153/CMB-1961-013-0 | Zbl 0101.03702

[3] Emmons C., Krebs M., Shaheen A., How to differentiate an integer modulo n, College Math. J., 2009, 40(5), 345–353 http://dx.doi.org/10.4169/074683409X475661

[4] Fechter T., Exploring the Derivative of a Natural Number Using the Logarithmic Derivative, Senior Capstone thesis, Pacific University, 2007

[5] Gleason A.M., Greenwood R.E., Kelly L.M. (Eds.), The William Lowell Putnam Mathematical Competition. Problems and Solutions: 1938–1964, Mathematical Association of America, Washington, 1980

[6] Kautschitsch H., Müller W.B., Über die Kettenregel in A [x 1,...x n], A (x 1...x n) und A [[x 1,...x n]], In: Contributions to General Algebra, 1, Klagenfurt, May 25–28, 1978, Johannes Heyn, Klagenfurt, 1979, 131–136

[7] Lausch H., Nöbauer W., Algebra of Polynomials, North-Holland Math. Library, 5, North-Holland, Amsterdam-London, 1973 | Zbl 0283.12101

[8] Menger K., General algebra of analysis, Reports of Mathematical Colloquium, 1946, 7, 46–60

[9] Müller W., Eindeutige Abbildungen mit Summen-, Produkt- und Kettenregel im Polynomring, Monatsh. Math., 1969, 73(4), 354–367 http://dx.doi.org/10.1007/BF01298986 | Zbl 0203.34904

[10] Müller W.B., The algebra of derivations, An. Acad. Brasil. Ciênc., 1973, 45, 339–343 (in Spanish)

[11] Müller W.B., Differentiations-Kompositionsringe, Acta Sci. Math. (Szeged), 1978, 40(1–2), 157–161

[12] Müller W.B., Über die Kettenregel in Fastringen, Abh. Math. Sem. Univ. Hamburg, 1979, 48(1), 108–111 http://dx.doi.org/10.1007/BF02941293 | Zbl 0416.16013

[13] Nöbauer W., Derivationssysteme mit Kettenregel, Monatsh. Math., 1963, 67(1), 36–49 http://dx.doi.org/10.1007/BF01300680 | Zbl 0107.02902

[14] Stay M., Generalized number derivatives, J. Integer Seq., 2005, 8(1), #05.1.4

[15] Ufnarovski V., Ahlander B., How to differentiate a number, J. Integer Seq., 2003, 6(3), #03.3.4

[16] Westrick L., Investigations of the number derivative, preprint available at http://www.plouffe.fr/simon/OEIS/archive_in_pdf/intmain.pdf | Zbl 06349659