An asymptotic approximation of Wallis’ sequence
Vito Lampret
Open Mathematics, Tome 10 (2012), p. 775-787 / Harvested from The Polish Digital Mathematics Library

An asymptotic approximation of Wallis’ sequence W(n) = Πk=1n 4k 2/(4k 2 − 1) obtained on the base of Stirling’s factorial formula is presented. As a consequence, several accurate new estimates of Wallis’ ratios w(n) = Πk=1n(2k−1)/(2k) are given. Also, an asymptotic approximation of π in terms of Wallis’ sequence W(n) is obtained, together with several double inequalities such as, for example, W(n)·(an+bn)<π<W(n)·(an+bn') with an=2+12n+1+23(2n+1)2-13n(2n+1)'bn=233(n+1)2'bn'113n2'n .

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:269161
@article{bwmeta1.element.doi-10_2478_s11533-011-0138-4,
     author = {Vito Lampret},
     title = {An asymptotic approximation of Wallis' sequence},
     journal = {Open Mathematics},
     volume = {10},
     year = {2012},
     pages = {775-787},
     zbl = {1252.40002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0138-4}
}
Vito Lampret. An asymptotic approximation of Wallis’ sequence. Open Mathematics, Tome 10 (2012) pp. 775-787. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0138-4/

[1] Abramowitz M., Stegun I.A. (Eds.), Handbook of Mathematical Functions, Dover, New York, 1974

[2] Beckmann P., A History of π, St. Martin’s Griffin, New York, 1974

[3] Berggren L., Borwein J., Borwein P., Pi: A Source Book, Springer, New York-Berlin-Heidelberg-Hong Kong-London-Milan-Paris-Tokyo, 2004

[4] Blatner D, The Joy of π, Walker & Co., New York, 1997

[5] Borwein J.M., Borwein P.B., Bailey D.H., Ramanujan, modular equations, and approximations to Pi or how to compute one billion digits of Pi, Amer. Math. Monthly, 1989, 96(3), 201–219 http://dx.doi.org/10.2307/2325206 | Zbl 0672.10017

[6] Bromwich T.J.I’A., An Introduction to the Theory of Infinite Series, Chelsea, Providence, 1991

[7] Chen C.-P., Qi F., The best bounds in Wallis’ inequality, Proc. Amer. Math. Soc., 2005, 133(2), 397–401 http://dx.doi.org/10.1090/S0002-9939-04-07499-4 | Zbl 1049.05006

[8] Chu J.T., A modified Wallis product and some applications, Amer. Math. Monthly, 1962, 69(5), 402–404 http://dx.doi.org/10.2307/2312135 | Zbl 0106.27203

[9] Henrici P., Applied and Computational Complex Analysis. II, Wiley Classics Lib., John Wiley & Sons, New York, 1991 | Zbl 0925.30003

[10] Hirschhorn M.D., Comments on the paper “Wallis’ sequence …” by Lampret, Austral. Math. Soc. Gaz., 2005, 32(3), 194 | Zbl 1111.40003

[11] Kazarinoff D.K., On Wallis’ formula, Edinburgh Math. Notes, 1956, 40, 19–21 http://dx.doi.org/10.1017/S095018430000029X | Zbl 0072.28401

[12] Knopp K., Theory and Applications of Infinite Series, Hafner, New York, 1971

[13] Lampret V., Wallis sequence estimated through the Euler-Maclaurin formula: even from the Wallis product π could be computed fairly accurately, Austral. Math. Soc. Gaz., 2004, 31(5), 328–339

[14] Lampret V., Constructing the Euler-Maclaurin formula (Celebrating Euler’s 300th birthday), Int. J. Math. Stat., 2007, 1(A07), 60–85 | Zbl 1132.65002

[15] Lewin J., Lewin M., An Introduction to Mathematical Analysis, Internat. Ser. Pure Appl. Math., McGraw-Hill, New York, 1993 | Zbl 1091.26001

[16] Mortici C., A new method for establishing and proving accurate bounds for the Wallis ratio, Math. Inequal. Appl., 2010, 13(4), 803–815 | Zbl 1206.33006

[17] Mortici C., New approximation formulas for evaluating the ratio of gamma functions, Math. Comput. Modelling, 2010, 52(1–2), 425–433 http://dx.doi.org/10.1016/j.mcm.2010.03.013 | Zbl 1201.33003

[18] Mortici C., On some accurate estimates of π, Bull. Math. Anal. Appl., 2010, 2(4), 137–139 | Zbl 1312.11095

[19] Mortici C., Sharp inequalities and complete monotonicity for the Wallis ratio, Bull. Belg. Math. Soc. Simon Stevin, 2010, 17(5), 929–936 | Zbl 1209.26026

[20] Păltănea E., On the rate of convergence of Wallis’ sequence, Austral. Math. Soc. Gaz., 2007, 34(1), 34–38 | Zbl 1185.26004

[21] Sofo A., Some representations of π, Austral. Math. Soc. Gaz., 2004, 31(3), 184–189 | Zbl 1119.11324

[22] Sun J.-S., Qu C.-M., Alternative proof of the best bounds of Wallis’ inequality, Commun. Math. Anal., 2007, 2(1), 23–27 | Zbl 1160.05301

[23] Wallis J., Computation of π by successive interpolations, Arithmetica Infinitorum, 1655; In: A Source Book in Mathematics, 1200–1800, Harvard University Press, Cambridge, 1969, 224–253

[24] Wolfram S., Mathematica, v. 7.0, Wolfram Research, 1988–2009