Discrete Laplace cycles of period four
Hans-Peter Schröcker
Open Mathematics, Tome 10 (2012), p. 426-439 / Harvested from The Polish Digital Mathematics Library

We study discrete conjugate nets whose Laplace sequence is of period four. Corresponding points of opposite nets in this cyclic sequence have equal osculating planes in different net directions, that is, they correspond in an asymptotic transformation. We show that this implies that the connecting lines of corresponding points form a discrete W-congruence. We derive some properties of discrete Laplace cycles of period four and describe two explicit methods for their construction.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:269134
@article{bwmeta1.element.doi-10_2478_s11533-011-0132-x,
     author = {Hans-Peter Schr\"ocker},
     title = {Discrete Laplace cycles of period four},
     journal = {Open Mathematics},
     volume = {10},
     year = {2012},
     pages = {426-439},
     zbl = {1247.51010},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0132-x}
}
Hans-Peter Schröcker. Discrete Laplace cycles of period four. Open Mathematics, Tome 10 (2012) pp. 426-439. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0132-x/

[1] Barner M., Über geschlossene Laplace-Ketten, Arch. Math. (Basel), 1958, 9(5), 366–377

[2] Bobenko A.I., Suris Y.B., Discrete Differential Geometry, Grad. Stud. Math., 98, American Mathematical Society, Providence, 2008 http://dx.doi.org/10.1007/978-3-7643-8621-4

[3] Degen W., Über geschlossene Laplace-Ketten ungerader Periodenzahl, Math. Z., 1960, 73(2), 95–120 http://dx.doi.org/10.1007/BF01162471 | Zbl 0101.39504

[4] Doliwa A., Geometric discretisation of the Toda system, Phys. Lett. A, 1997, 234(3), 187–192 http://dx.doi.org/10.1016/S0375-9601(97)00477-5 | Zbl 1044.37527

[5] Doliwa A., Asymptotic lattices and W-congruences in integrable discrete geometry, J. Nonlinear Math. Phys., 2001, 8(suppl.), 88–92 http://dx.doi.org/10.2991/jnmp.2001.8.s.16 | Zbl 0990.37055

[6] Doliwa A., Discrete asymptotic nets and W-congruences in Plücker line geometry, J. Geom. Phys., 2001, 39(1), 9–29 http://dx.doi.org/10.1016/S0393-0440(00)00070-X | Zbl 0990.37056

[7] Doliwa A., Santini P.M., Mañas M., Transformations of quadrilateral lattices, J. Math. Phys., 2000, 41(2), 944–990 http://dx.doi.org/10.1063/1.533175 | Zbl 0987.37070

[8] Edge W.L., The net of quadric surfaces associated with a pair of Möbius tetrads, Proc. Lond. Math. Soc., 1936, 41(1), 337–360 http://dx.doi.org/10.1112/plms/s2-41.5.337 | Zbl 62.0744.02

[9] Hammond E.S., Periodic conjugate nets, Ann. of Math, 1921, 22(4), 238–261 http://dx.doi.org/10.2307/1967906 | Zbl 48.0844.03

[10] Hu H.S., Laplace sequences of surfaces in projective space and two-dimensional Toda equations, Lett. Math. Phys., 2001, 57(1), 19–32 http://dx.doi.org/10.1023/A:1017923708829

[11] Jonas H., Allgemeine Transformationstheorie der konjugierten Systeme mit viergliedrigen Laplaceschen Zyklen, Math. Ann., 1937, 114(1), 749–780 http://dx.doi.org/10.1007/BF01594207 | Zbl 63.0665.01

[12] Jonas H., Ein allgemeiner Satz über W-Kongruenzen mit Anwendungen auf Laplacesche Zyklen, Biegungsflächen des einschaligen Hyperboloids und schiefe Weingarten Systeme, Math. Ann., 1937, 114(1), 237–274 http://dx.doi.org/10.1007/BF01594175 | Zbl 63.0664.05

[13] Möbius A.F., Kann von zwei dreiseitigen Pyramiden eine jede in Bezug auf die andere um- und eingeschrieben zugleich heißen?, J. Reine Angew. Math., 1828, 3, 273–278 http://dx.doi.org/10.1515/crll.1828.3.273

[14] Nieszporski M., On a discretization of asymptotic nets, J. Geom. Phys., 2002, 40(3–4), 259–276 http://dx.doi.org/10.1016/S0393-0440(01)00038-9

[15] Pottmann H., Wallner J., Computational Line Geometry, Math. Vis., Springer, Berlin, 2010 http://dx.doi.org/10.1007/978-3-642-04018-4 | Zbl 1175.51014

[16] Sasaki T., Line congruence and transformation of projective surfaces, Kyushu J. Math., 2006, 60(1), 101–243 http://dx.doi.org/10.2206/kyushujm.60.101 | Zbl 1104.53008

[17] Sauer R., Projektive Liniengeometrie, Göschens Lehrbücherei I: Reine und Angewandte Mathematik, 23, de Gruyter, Berlin, 1937

[18] Veblen O., Young J.W., Projective Geometry. I, Ginn and Company, Boston-London, 1910

[19] Wilczynski E.J., The general theory of congruences, Trans. Amer. Math. Soc., 1915, 16(3), 311–327 http://dx.doi.org/10.1090/S0002-9947-1915-1501014-2 | Zbl 45.0927.01