One-fibered ideals in 2-dimensional rational singularities that can be desingularized by blowing up the unique maximal ideal
Veronique Lierde
Open Mathematics, Tome 9 (2011), p. 1349-1353 / Harvested from The Polish Digital Mathematics Library

Let (R;m) be a 2-dimensional rational singularity with algebraically closed residue field and whose associated graded ring is an integrally closed domain. Göhner has shown that for every prime divisor v of R, there exists a unique one-fibered complete m-primary ideal A v in R with unique Rees valuation v and such that any complete m-primary ideal with unique Rees valuation v, is a power of A v. We show that for v ≠ ordR, A v is the inverse transform of a simple complete ideal in an immediate quadratic transform of R, if and only if the degree coefficient d(A v; v) is 1. We then give a criterion for R to be regular.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:268961
@article{bwmeta1.element.doi-10_2478_s11533-011-0095-y,
     author = {Veronique Lierde},
     title = {One-fibered ideals in 2-dimensional rational singularities that can be desingularized by blowing up the unique maximal ideal},
     journal = {Open Mathematics},
     volume = {9},
     year = {2011},
     pages = {1349-1353},
     zbl = {1228.13013},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0095-y}
}
Veronique Lierde. One-fibered ideals in 2-dimensional rational singularities that can be desingularized by blowing up the unique maximal ideal. Open Mathematics, Tome 9 (2011) pp. 1349-1353. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0095-y/

[1] Debremaeker R., First neighborhood complete ideals in two-dimensional Muhly local domains, J. Pure Appl. Algebra, 2009, 213(6), 1140–1151 http://dx.doi.org/10.1016/j.jpaa.2008.11.002 | Zbl 1163.13004

[2] Debremaeker R., Van Lierde V., The effect of quadratic transformations on degree functions, Beiträge Algebra Geom., 2006, 47(1), 121–135 | Zbl 1095.13026

[3] Debremaeker R., Van Lierde V., On adjacent ideals in two-dimensional rational singularities, Comm. Algebra, 2010, 38(1), 308–331 http://dx.doi.org/10.1080/00927870903392476 | Zbl 1201.13007

[4] Göhner H., Semifactoriality and Muhly’s condition (N) in two dimensional local rings, J. Algebra, 1975, 34(3), 403–429 http://dx.doi.org/10.1016/0021-8693(75)90166-0

[5] Huneke C., Complete ideals in two-dimensional regular local rings, In: Commutative Algebra, Berkeley, June 15–July 2, 1987, Math. Sci. Res. Inst. Publ., 15, New York, Springer, 1989, 325–338

[6] Huneke C., Swanson I., Integral Closure of Ideals, Rings, and Modules, London Math. Soc. Lecture Note Ser., 336, Cambridge University Press, Cambridge, 2006 | Zbl 1117.13001

[7] Lipman J., Rational singularities, with applications to algebraic surfaces and unique factorization, Inst. Hautes Études Sci. Publ. Math., 1969, 36, 195–279 http://dx.doi.org/10.1007/BF02684604 | Zbl 0181.48903

[8] Noh S., Simple complete ideals in two-dimensional regular local rings, Comm. Algebra, 1997, 25(5), 1563–1572 http://dx.doi.org/10.1080/00927879708825936 | Zbl 0878.13015

[9] Noh S., Watanabe K., Adjacent integrally closed ideals in 2-dimensional regular local rings, J. Algebra, 2006, 302(1), 156–166 http://dx.doi.org/10.1016/j.jalgebra.2005.10.034 | Zbl 1109.13019

[10] Rees D., Degree functions in local rings, Math. Proc. Cambridge Philos. Soc., 1961, 57(1), 1–7 http://dx.doi.org/10.1017/S0305004100034794 | Zbl 0111.24901

[11] Rees D., Sharp R.Y., On a theorem of B. Teissier on multiplicities of ideals in local rings, J. Lond. Math. Soc., 1978, 18(3), 449–463 http://dx.doi.org/10.1112/jlms/s2-18.3.449 | Zbl 0408.13009

[12] Van Lierde V., A mixed multiplicity formula for complete ideals in 2-dimensional rational singularities Proc. Amer. Math. Soc., 2010, 138(12), 4197–4204 http://dx.doi.org/10.1090/S0002-9939-2010-10455-0 | Zbl 1207.13006

[13] Van Lierde V., Degree functions and projectively full ideals in 2-dimensional rational singularities that can be desingularized by blowing up the unique maximal ideal, J. Pure Appl. Algebra, 2010, 214(5), 512–518 http://dx.doi.org/10.1016/j.jpaa.2009.06.002 | Zbl 1184.13026

[14] Zariski O., Polynomial ideals defined by infinitely near base points, Amer. J. Math., 1938, 60(1), 151–204 http://dx.doi.org/10.2307/2371550 | Zbl 0018.20101

[15] Zariski O., Samuel P., Commutative Algebra. II, The University Series in Higher Mathematics, Van Nostrand, Princeton-Toronto-London-New York, 1960 | Zbl 0121.27801