Normalizers and self-normalizing subgroups II
Boris Širola
Open Mathematics, Tome 9 (2011), p. 1317-1332 / Harvested from The Polish Digital Mathematics Library

Let 𝕂 be a field, G a reductive algebraic 𝕂-group, and G 1 ≤ G a reductive subgroup. For G 1 ≤ G, the corresponding groups of 𝕂-points, we study the normalizer N = N G(G 1). In particular, for a standard embedding of the odd orthogonal group G 1 = SO(m, 𝕂) in G = SL(m, 𝕂) we have N ≅ G 1 ⋊ µm(𝕂), the semidirect product of G 1 by the group of m-th roots of unity in 𝕂. The normalizers of the even orthogonal and symplectic subgroup of SL(2n, 𝕂) were computed in [Širola B., Normalizers and self-normalizing subgroups, Glas. Mat. Ser. III (in press)], leaving the proof in the odd orthogonal case to be completed here. Also, for G = GL(m, 𝕂) and G 1 = O(m, 𝕂) we have N ≅ G 1 ⋊ 𝕂 ×. In both of these cases, N is a self-normalizing subgroup of G.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:268938
@article{bwmeta1.element.doi-10_2478_s11533-011-0091-2,
     author = {Boris \v Sirola},
     title = {Normalizers and self-normalizing subgroups II},
     journal = {Open Mathematics},
     volume = {9},
     year = {2011},
     pages = {1317-1332},
     zbl = {1241.20056},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0091-2}
}
Boris Širola. Normalizers and self-normalizing subgroups II. Open Mathematics, Tome 9 (2011) pp. 1317-1332. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0091-2/

[1] Borel A., Linear Algebraic Groups, 2nd ed., Grad. Texts in Math., 126, Springer, New York, 1991 http://dx.doi.org/10.1007/978-1-4612-0941-6

[2] Brylinski R., Kostant B., Nilpotent orbits, normality, and Hamiltonian group actions, J. Amer. Math. Soc., 1994, 7(2), 269–298 | Zbl 0826.22017

[3] Dixmier J., Enveloping Algebras, Grad. Stud. Math., 11, American Mathematical Society, Providence, 1996 | Zbl 0867.17001

[4] Howe R., Tan E.-C., Willenbring J.F., Stable branching rules for classical symmetric pairs, Trans. Amer. Math. Soc., 2005, 357(4), 1601–1626 http://dx.doi.org/10.1090/S0002-9947-04-03722-5 | Zbl 1069.22006

[5] Humphreys J.E., Linear Algebraic Groups, Grad. Texts in Math., 21, Springer, New York-Heidelberg, 1975 | Zbl 0325.20039

[6] Humphreys J.E., Conjugacy Classes in Semisimple Algebraic Groups, Math. Surveys Monogr., 43, American Mathematical Society, Providence, 1995 | Zbl 0834.20048

[7] Jantzen J.C., Nilpotent orbits in representation theory, In: Lie Theory, Progr. Math., 228, Birkhäuser, Boston, 2004, 1–211 http://dx.doi.org/10.1007/978-0-8176-8192-0_1 | Zbl 1169.14319

[8] Kirillov A.A., Lectures on the Orbit Method, Grad. Stud. Math., 64, American Mathematical Society, Providence, 2004 | Zbl 1229.22003

[9] Knapp A.W., Geometric interpretations of two branching theorems of D. E. Littlewood, J. Algebra, 2003, 270(2), 728–754 http://dx.doi.org/10.1016/j.jalgebra.2002.11.001 | Zbl 1038.22005

[10] Kobayashi T., Discrete decomposability of the restriction of A q(λ) with respect to reductive subgroups III. Restriction of Harish-Chandra modules and associated varieties, Invent. Math., 1998, 131(2), 229–256 http://dx.doi.org/10.1007/s002220050203 | Zbl 0907.22016

[11] Kobayashi T., Discretely decomposable restrictions of unitary representations of reductive Lie groups - examples and conjectures, In: Analysis on Homogeneous Spaces and Representation Theory of Lie Groups, Okayama-Kyoto, 1997, Adv. Stud. Pure Math., 26, Mathematical Society of Japan, Tokyo, 2000, 99–127 | Zbl 0959.22009

[12] Kostant B., A branching law for subgroups fixed by an involution and a noncompact analogue of the Borel-Weil theorem, In: Noncommutative Harmonic Analysis, Progr. Math., 220, Birkhäuser, Boston, 2004, 291–353 http://dx.doi.org/10.1007/978-0-8176-8204-0_11 | Zbl 1162.17304

[13] Levasseur T., Smith S.P., Primitive ideals and nilpotent orbits in type G 2, J. Algebra, 1988, 114(1), 81–105 http://dx.doi.org/10.1016/0021-8693(88)90214-1 | Zbl 0644.17005

[14] Richardson R.W. Jr., Conjugacy classes in Lie algebras and algebraic groups, Ann. of Math., 1967, 86(1), 1–15 http://dx.doi.org/10.2307/1970359

[15] Širola B., Pairs of semisimple Lie algebras and their maximal reductive subalgebras, Algebr. Represent. Theory, 2008, 11(3), 233–250 http://dx.doi.org/10.1007/s10468-007-9068-z | Zbl 1163.17008

[16] Širola B., Pairs of Lie algebras and their self-normalizing reductive subalgebras, J. Lie Theory, 2009, 19(4), 735–766 | Zbl 1257.17007

[17] Širola B., Normalizers and self-normalizing subgroups, Glas. Mat. Ser. III (in press) | Zbl 1241.20055

[18] Širola B., On centralizers and normalizers for groups (in preparation)

[19] Springer T.A., Linear Algebraic Groups, 2nd ed., Progr. Math., 9, Birkhäuser, Boston, 1998 http://dx.doi.org/10.1007/978-0-8176-4840-4 | Zbl 0927.20024

[20] Vogan D.A. Jr., The unitary dual of G 2, Invent. Math., 1994, 116, 677–791 http://dx.doi.org/10.1007/BF01231578 | Zbl 0808.22003