The structure and representation of n-ary algebras of DNA recombination
Sergei Sverchkov
Open Mathematics, Tome 9 (2011), p. 1193-1216 / Harvested from The Polish Digital Mathematics Library

In this paper we investigate the structure and representation of n-ary algebras arising from DNA recombination, where n is a number of DNA segments participating in recombination. Our methods involve a generalization of the Jordan formalization of observables in quantum mechanics in n-ary splicing algebras. It is proved that every identity satisfied by n-ary DNA recombination, with no restriction on the degree, is a consequence of n-ary commutativity and a single n-ary identity of the degree 3n-2. It solves the well-known open problem in the theory of n-ary intermolecular recombination.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:269346
@article{bwmeta1.element.doi-10_2478_s11533-011-0087-y,
     author = {Sergei Sverchkov},
     title = {The structure and representation of n-ary algebras of DNA recombination},
     journal = {Open Mathematics},
     volume = {9},
     year = {2011},
     pages = {1193-1216},
     zbl = {1252.17016},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0087-y}
}
Sergei Sverchkov. The structure and representation of n-ary algebras of DNA recombination. Open Mathematics, Tome 9 (2011) pp. 1193-1216. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0087-y/

[1] Bremner M.R., Jordan algebras arising from intermolecular recombination, SIGSAM Bull., 2005, 39(4), 106–117 http://dx.doi.org/10.1145/1140378.1140380 | Zbl 1226.17026

[2] Bremner M.R., Polynomial identities for ternary intermolecular recombination, Discrete Contin. Dyn. Syst. Ser. S, 2011, 4(6), 1387–1399 http://dx.doi.org/10.3934/dcdss.2011.4.1387 | Zbl 1256.17001

[3] Cohn P.M., On homomorphic images of special Jordan algebras, Canad. J. Math., 1954, 6, 253–264 http://dx.doi.org/10.4153/CJM-1954-026-9 | Zbl 0055.02704

[4] Einstein A., Podolsky B., Rosen N., Can quantum-mechanical description of physical reality be considered complete?, Phys. Rev., 1935, 47(10), 777–780 http://dx.doi.org/10.1103/PhysRev.47.777 | Zbl 0012.04201

[5] Jacobson N., Lie Algebras, Interscience Tracts in Pure and Applied Mathematics, 10, Interscience, New York-London, 1962 | Zbl 0121.27504

[6] Jordan P., Über Verallgemeinerungsmöglichkeiten des Formalismus der Quantenmechanik, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. I, 1933, 41, 209–217 | Zbl 0007.08502

[7] Landweber L.F., Kari L., The evolution on cellular computing: natire’s solution to a computational problem, BioSystems, 1999, 52(1–3), 3–13 http://dx.doi.org/10.1016/S0303-2647(99)00027-1

[8] Mal’cev A.I., Algebraic Systems, Grundlehren Math. Wiss., 192, Springer, Berlin-Heidelberg-New York, 1973

[9] Morgan T.H., A Critique of the Theory of Evolution, Princeton University Press, Princeton, 1916

[10] Robbins D.P., Jordan elements in a free associative algebra. I, J. Algebra, 1971, 19(3), 354–378 http://dx.doi.org/10.1016/0021-8693(71)90095-0

[11] Slin’ko A.M., On special varieties of Jordan algebras, Mat. Zametki, 1979, 26(3), 337–344 (in Russian)

[12] Sverchkov S., Varieties of special algebras, Comm. Algebra, 1988, 16(9), 1877–1919 http://dx.doi.org/10.1080/00927878808823665 | Zbl 0661.17028

[13] Sverchkov S.R., Structure and representation of Jordan algebras arising from intermolecular recombination, In: Algebras, Representations and Applications, Maresias, August 26–September 1, 2007, Contemp. Math. 483, American Mathematical Society, Providence, 2009, 261–285 | Zbl 1196.17024

[14] Zhevlakov K.A., Slin’ko A.M., Shestakov I.P., Shirshov A.I., Rings that are Nearly Associative, Pure Appl. Math., 104, Academic Press, New York-London, 1982