Algebraic axiomatization of tense intuitionistic logic
Ivan Chajda
Open Mathematics, Tome 9 (2011), p. 1185-1191 / Harvested from The Polish Digital Mathematics Library

We introduce two unary operators G and H on a relatively pseudocomplemented lattice which form an algebraic axiomatization of the tense quantifiers “it is always going to be the case that” and “it has always been the case that”. Their axiomatization is an extended version for the classical logic and it is in accordance with these operators on many-valued Łukasiewicz logic. Finally, we get a general construction of these tense operators on complete relatively pseudocomplemented lattice which is a power lattice via the so-called frame.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:269762
@article{bwmeta1.element.doi-10_2478_s11533-011-0063-6,
     author = {Ivan Chajda},
     title = {Algebraic axiomatization of tense intuitionistic logic},
     journal = {Open Mathematics},
     volume = {9},
     year = {2011},
     pages = {1185-1191},
     zbl = {1260.03113},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0063-6}
}
Ivan Chajda. Algebraic axiomatization of tense intuitionistic logic. Open Mathematics, Tome 9 (2011) pp. 1185-1191. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0063-6/

[1] Birkhoff G., Lattice Theory, Amer. Math. Soc. Colloq. Publ., 3rd ed., 25, American Mathematical Society, Providence, 1967

[2] Botur M., Chajda I., Halaš R., Kolařík M., Tense operators on basic algebras, Internat. J. Theoret. Phys. (in press), DOI: 10.1007/s10773-011-0748-4 | Zbl 1246.81014

[3] Brouwer L.E.J., Intuitionism and formalism, Bull. Amer. Math. Soc., 1913, 20(2), 81–96 http://dx.doi.org/10.1090/S0002-9904-1913-02440-6

[4] Burgess J.P., Basic tense logic, In: Handbook of Philosophical Logic II, Synthese Lib., 165, Reidel, Dordrecht, 1984, 89–133

[5] Chajda I., Halaš R., Kühr J., Semilattice Structures, Res. Exp. Math., 30, Heldermann, Lemgo, 2007 | Zbl 1117.06001

[6] Chajda I., Kolařík M., Dynamic effect algebras, Math. Slovaca (in press) | Zbl 1324.03026

[7] Chiriţă C., Tense ϑ-valued Moisil propositional logic, International Journal of Computers, Communications & Control, 2010, 5(5), 642–653

[8] Chiriţă C., Tense ϑ-valued Łukasiewicz-Moisil algebras, J. Mult.-Valued Logic Soft Comput., 2011, 17(1), 1–24 | Zbl 1236.03046

[9] Diaconescu D., Georgescu G., Tense operators on MV-algebras and Łukasiewicz-Moisil algebras, Fund. Inform., 2007, 81(4), 379–408 | Zbl 1136.03045

[10] Ewald W.B., Intuitionistic tense and modal logic, J. Symbolic Logic, 1986, 51(1), 166–179 http://dx.doi.org/10.2307/2273953 | Zbl 0618.03004

[11] Heyting A., Intuitionism. An Introduction, North-Holland, Amsterdam, 1956

[12] Rasiowa H., Sikorski R., The Mathematics of Metamathematics, Monogr. Mat., 41, PWN, Warszawa, 1963 | Zbl 0122.24311

[13] Turunen E., Mathematics Behind Fuzzy Logic, Adv. Soft Comput., Physica-Verlag, Heidelberg, 1999 | Zbl 0940.03029

[14] Wijesekera D., Constructive modal logics. I, Ann. Pure Appl. Logic, 1990, 50(3), 271–301 http://dx.doi.org/10.1016/0168-0072(90)90059-B