Geography of log models: theory and applications
Vyacheslav Shokurov ; Sung Choi
Open Mathematics, Tome 9 (2011), p. 489-534 / Harvested from The Polish Digital Mathematics Library

This is an introduction to geography of log models with applications to positive cones of Fano type (FT) varieties and to geometry of minimal models and Mori fibrations.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:269681
@article{bwmeta1.element.doi-10_2478_s11533-011-0013-3,
     author = {Vyacheslav Shokurov and Sung Choi},
     title = {Geography of log models: theory and applications},
     journal = {Open Mathematics},
     volume = {9},
     year = {2011},
     pages = {489-534},
     zbl = {1234.14014},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0013-3}
}
Vyacheslav Shokurov; Sung Choi. Geography of log models: theory and applications. Open Mathematics, Tome 9 (2011) pp. 489-534. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0013-3/

[1] Ambro F., The moduli b-divisor of an lc-trivial fibration, Compos. Math., 2005, 141(2), 385–403 http://dx.doi.org/10.1112/S0010437X04001071 | Zbl 1094.14025

[2] Birkar C., Cascini P., Hacon C.D., McKernan J., Existence of minimal models for varieties of log general type, J. Amer. Math. Soc., 2010, 23(2), 405–468 http://dx.doi.org/10.1090/S0894-0347-09-00649-3 | Zbl 1210.14019

[3] Brown G., Corti A., Zucconi F., Birational geometry of 3-fold Morifibre spaces, In: The Fano Conference, 2004, Univ. Torino, Turin, 235–275 | Zbl 1063.14019

[4] Cheltsov I.A., Grinenko M.M., Birational rigidity is not an open property, preprint available at http://arxiv.org/abs/math/0612159

[5] Choi S., Geography of Log Models and its Applications, Ph.D. thesis, Johns Hopkins University, Baltimore, 2008

[6] Corti A., Factoring birational maps of threefolds after Sarkisov, J. Algebraic Geom., 1995, 4(2), 223–254 | Zbl 0866.14007

[7] Corti A., Singularities of linear systems and 3-fold birational geometry, In: Explicit Birational Geometry of 3-folds, London Math. Soc. Lecture Note Ser., 281, Cambridge University Press, Cambridge, 2000, 259–312 | Zbl 0960.14017

[8] Grinenko M.M., Birational properties of pencils of del Pezzo surfaces of degrees 1 and 2, Sb. Math., 2000, 191(5–6), 633–653 http://dx.doi.org/10.1070/SM2000v191n05ABEH000475

[9] Grinenko M.M., Fibrations into del Pezzo surfaces, Russian Math. Surveys, 2006, 61(2), 255–300 http://dx.doi.org/10.1070/RM2006v061n02ABEH004312 | Zbl 1124.14020

[10] Iskovskih V.A., On the rationality problem for three-dimensional algebraic varieties fibered over del Pezzo surfaces, Trudy Mat. Inst. Steklov, 1995, 208, Teor. Chisel, Algebra i Algebr. Geom., 128–138

[11] Iskovskih V.A., A rationality criterion for conic bundles, Sb. Mat, 1996, 187(7), 1021–1038 http://dx.doi.org/10.1070/SM1996v187n07ABEH000145 | Zbl 0922.14026

[12] Iskovskikh V.A., Shokurov V.V., Birational models and flips, Russian Math. Surveys, 2005, 60(1), 27–94 http://dx.doi.org/10.1070/RM2005v060n01ABEH000807 | Zbl 1079.14023

[13] Kawamata Y, Matsuda K., Matsuki K., Introduction to the minimal model problem, In: Algebraic Geometry, Sendai, 1985, Adv. Stud. Pure Math., 10, North-Holland, Amsterdam, 1987, 283–360 | Zbl 0672.14006

[14] Klee V, Some characterizations of convex polyhedra, Acta Math., 1959, 102(1–2), 79–107 http://dx.doi.org/10.1007/BF02559569 | Zbl 0094.16802

[15] Kollár J., Miyaoka Y, Mori S., Takagi H., Boundedness of canonical Q-Fano 3-folds Proc. Japan Acad. Ser. A Math. Sci., 2000, 76(5), 73–77 http://dx.doi.org/10.3792/pjaa.76.73 | Zbl 0981.14016

[16] Kollár J., Mori S., Birational Geometry of Algebraic Varieties, Cambridge Tracts in Math., 134, Cambridge University Press, Cambridge, 1998 http://dx.doi.org/10.1017/CBO9780511662560 | Zbl 0926.14003

[17] Park J., Birational maps of del Pezzo fibrations, J. Reine Angew. Math., 2001, 538, 213–221 http://dx.doi.org/10.1515/crll.2001.066

[18] Prokhorov Yu.G., Shokurov V.V., Towards the second main theorem on complements, J. Algebraic Geom., 2009, 18(1), 151–199 | Zbl 1159.14020

[19] Pukhlikov A.V., Birational automorphisms of three-dimensional algebraic varieties with a pencil of del Pezzo surfaces, Izv. Math., 1998, 62(1), 115–155 http://dx.doi.org/10.1070/IM1998v062n01ABEH000188 | Zbl 0948.14008

[20] Sarkisov V.G., Birational automorphisms of conic bundles, Math. USSR-Izv, 1981, 17(4), 177–202 http://dx.doi.org/10.1070/IM1981v017n01ABEH001326 | Zbl 0466.14012

[21] Sarkisov V.G., On conic bundle structures, Math. USSR-Izv, 1982, 20(2), 355–390 http://dx.doi.org/10.1070/IM1983v020n02ABEH001354 | Zbl 0593.14034

[22] Shokurov V.V., The nonvanishing theorem, Math. USSR-Izv, 1986, 26(3), 591–604 http://dx.doi.org/10.1070/IM1986v026n03ABEH001160 | Zbl 0605.14006

[23] Shokurov V.V., Three-dimensional log perestroikas, Izv. Ross. Akad. Nauk Ser. Mat, 1992, 56(1), 105–203

[24] Shokurov V.V., Anticanonical boundedness for curves, Appendix to: Nikulin V.V., The diagram method for 3-folds and its application to the Kähler cone and Picard number of Calabi-Yau 3-folds, In: Higher Dimensional Complex Varieties, Trento, June 1994, de Gruyter, Berlin, 1996, 321–328

[25] Shokurov V.V., 3-fold log models, J. Math. Sci., 1996, 81(3), 2667–2699 http://dx.doi.org/10.1007/BF02362335 | Zbl 0873.14014

[26] Shokurov V.V., Prelimiting flips, Proc. Steklov Inst. Math., 2003, 240(1), 75–213 | Zbl 1082.14019

[27] Shokurov V.V., Letters of a bi-rationalist. VII Ordered termination, Proc. Steklov Inst. Math., 2009, 264(1), 178–200 http://dx.doi.org/10.1134/S0081543809010192 | Zbl 1312.14041

[28] Zagorskii A.A., On three-dimensional conical bundles, Mat. Zametki., 1977, 21(6), 745–758 (in Russian) | Zbl 0369.14008