Positive periodic solutions of parabolic evolution problems: a translation along trajectories approach
Aleksander Ćwiszewski
Open Mathematics, Tome 9 (2011), p. 244-268 / Harvested from The Polish Digital Mathematics Library

A translation along trajectories approach together with averaging procedure and topological degree are used to derive effective criteria for existence of periodic solutions for nonautonomous evolution equations with periodic perturbations. It is shown that a topologically nontrivial zero of the averaged right hand side is a source of periodic solutions for the equations with increased frequencies. Our setting involves equations on closed convex cones, therefore it enables us to study positive solutions of nonlinear parabolic partial differential equations.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:269288
@article{bwmeta1.element.doi-10_2478_s11533-011-0010-6,
     author = {Aleksander \'Cwiszewski},
     title = {Positive periodic solutions of parabolic evolution problems: a translation along trajectories approach},
     journal = {Open Mathematics},
     volume = {9},
     year = {2011},
     pages = {244-268},
     zbl = {1222.47132},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0010-6}
}
Aleksander Ćwiszewski. Positive periodic solutions of parabolic evolution problems: a translation along trajectories approach. Open Mathematics, Tome 9 (2011) pp. 244-268. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-011-0010-6/

[1] Amann H., Periodic solutions of semilinear parabolic equations, In: Nonlinear Analysis (collection of papers in honor of Erich H. Rothe), Academic Press, New York, 1978, 1–29

[2] Bader R., Kryszewski W., On the solution sets of differential inclusions and the periodic problem in Banach spaces, Nonlinear Anal., 2003, 54(4), 707–754 http://dx.doi.org/10.1016/S0362-546X(03)00098-1 | Zbl 1034.34072

[3] Bothe D., Flow invariance for perturbed nonlinear evolution equations, Abstr. Appl. Anal., 1996, 1(4), 417–433 http://dx.doi.org/10.1155/S1085337596000231 | Zbl 0954.34054

[4] Brézis H., Nirenberg L., Characterizations of the ranges of some nonlinear operators and applications to boundary value problems, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 1978, 5(2), 225–326 | Zbl 0386.47035

[5] Chen Y.Z., The generalized degree for compact perturbations of m-accretive operators and applications, Nonlinear Anal., 1989, 13(4), 393–403 http://dx.doi.org/10.1016/0362-546X(89)90046-1

[6] Ćwiszewski A., Topological degree methods for perturbations of operators generating compact C 0 semigroups, J. Differential Equations, 2006, 220(2), 434–477 http://dx.doi.org/10.1016/j.jde.2005.04.007 | Zbl 1086.47030

[7] Ćwiszewski A., Kryszewski W., Constrained topological degree and positive solutions of fully nonlinear boundary value problems, J. Differential Equations, 2009, 247(8), 2235–2269 http://dx.doi.org/10.1016/j.jde.2009.06.025 | Zbl 1188.35088

[8] Ćwiszewski A., Kryszewski W., On a generalized Poincaré-Hopf formula in infinite dimensions, Discrete Contin. Dyn. Syst., 2011, 29(3), 953–978 http://dx.doi.org/10.3934/dcds.2011.29.953 | Zbl 1214.37013

[9] Evans L.C., Partial Differential Equations, Grad. Stud. Math., 19, American Mathematical Society, Providence, 1998

[10] Granas A., The Leray-Schauder index and the fixed point theory for arbitrary ANRs, Bull. Soc. Math. France, 1972, 100, 209–228 | Zbl 0236.55004

[11] Granas A., Dugundji J., Fixed Point Theory, Springer Monogr. Math., Springer, New York, 2003 | Zbl 1025.47002

[12] Guan Z.G., Kartsatos A.G., A degree for maximal monotone operators, In: Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, Lecture Notes in Pure and Appl. Math., 178, Dekker, New York, 1996 | Zbl 0864.47028

[13] Henry D., Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math., 840, Springer, Berlin-New York, 1981 | Zbl 0456.35001

[14] Hess P., Periodic-parabolic Boundary Value Problems and Positivity, Pitman Res. Notes Math. Ser., 247, Longman Scientific & Technical, Harlow, 1991 | Zbl 0731.35050

[15] Kamenskii M., Obukhovskii V., Zecca P., Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, de Gruyter Ser. Nonlinear Anal. Appl., 7, de Gruyter, Berlin, 2001 | Zbl 0988.34001

[16] Kartsatos A.G., Recent results involving compact perturbations and compact resolvents of accretive operators in Banach spaces, In: World Congress of Nonlinear Analysts, Tampa, August 19–26, 1992, de Gruyter, Berlin, 1996, 2197–2222 | Zbl 0849.47027

[17] Kryszewski W., Topological structure of solution sets of differential inclusions: the constrained case, Abstr. Appl. Anal., 2003, 6, 325–351 http://dx.doi.org/10.1155/S1085337503204115 | Zbl 1021.49019

[18] Maciejewski M., Topological Degree for Mutivalued Perturbations of Monotone Operators with Constraints, Ph.D. thesis, Nicolaus Copernicus University, Torun, 2011 (in Polish)

[19] Nkashama M.N., Willem M., Periodic solutions of the boundary value problem for the nonlinear heat equation, Bull. Aust. Math. Soc., 1984, 30(1), 99–110 http://dx.doi.org/10.1017/S0004972700001751 | Zbl 0555.35062

[20] Nussbaum R.D., The fixed point index for local condensing maps, Ann. Mat. Pura Appl., 1971, 89(1), 217–258 http://dx.doi.org/10.1007/BF02414948 | Zbl 0226.47031

[21] Pazy A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Appl. Math. Sci., 44, Springer, Berlin, 1983 | Zbl 0516.47023

[22] Showalter R.E., Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, Math. Surveys Monogr., 49, American Mathematical Society, Providence, 1997 | Zbl 0870.35004

[23] Vejvoda O., Herrmann L., Lovicar V., Sova M., Straškraba I., Štěedrý M., Partial Differential Equations: Time-periodic Solutions, Martinus Nijhoff, Hague, 1981