Nonlinear exponential twists of the Liouville function
Qingfeng Sun
Open Mathematics, Tome 9 (2011), p. 328-337 / Harvested from The Polish Digital Mathematics Library

Let λ(n) be the Liouville function. We find a nontrivial upper bound for the sum Xn2Xλ(n)e2πiαn,0α The main tool we use is Vaughan’s identity for λ(n).

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:269447
@article{bwmeta1.element.doi-10_2478_s11533-010-0092-6,
     author = {Qingfeng Sun},
     title = {Nonlinear exponential twists of the Liouville function},
     journal = {Open Mathematics},
     volume = {9},
     year = {2011},
     pages = {328-337},
     zbl = {1276.11138},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0092-6}
}
Qingfeng Sun. Nonlinear exponential twists of the Liouville function. Open Mathematics, Tome 9 (2011) pp. 328-337. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0092-6/

[1] Davenport H., Multiplicative Number Theory, 2nd ed., Grad. Texts in Math., 74, Springer, New York-Berlin, 1980 | Zbl 0453.10002

[2] Iwaniec H., Kowalski E., Analytic Number Theory, Amer. Math. Soc. Colloq. Publ., 53, American Mathematical Society, Providence, 2004 | Zbl 1059.11001

[3] Iwaniec H., Luo W., Sarnak P., Low lying zeros of families of L-functions, Inst. Hautes Études Sci. Publ. Math., 2000, 91, 55–131 http://dx.doi.org/10.1007/BF02698741 | Zbl 1012.11041

[4] Murty M.R., Sankaranarayanan A., Averages of exponential twists of the Liouville function, Forum Math., 2002, 14(2), 273–291 http://dx.doi.org/10.1515/form.2002.012 | Zbl 1012.11076

[5] Pi Q.H., Sun Q.F., Oscillations of cusp form coefficients in exponential sums, Ramanujan J., 2010, 21(1), 53–64 http://dx.doi.org/10.1007/s11139-008-9151-z | Zbl 1245.11057

[6] Ren X.M., Vinogradov’s exponential sums over primes, Acta Arith., 2006, 124(3), 269–285 http://dx.doi.org/10.4064/aa124-3-5

[7] Sun Q.F., On cusp form coefficients in nonlinear exponential sums, Q. J. Math., 2010, 61(3), 363–372 http://dx.doi.org/10.1093/qmath/hap008 | Zbl 1245.11059

[8] Titchmarsh E.C., The Theory of the Riemann Zeta-Function, 2nd ed., University Press, New York, 1986 | Zbl 0601.10026

[9] Vinogradov I.M., Special Variants of the Method of Trigonometric Sums, Nauka, Moscow, 1976 (in Russian), English translation in: Vinogradov I.M., Selected Works, Springer, Berlin, 1985 | Zbl 0429.10023

[10] Zhao L.Y., Oscillations of Hecke eigenvalues at shifted primes, Rev. Mat. Iberoam., 2006, 22(1), 323–337 | Zbl 1170.11024