Let λ(n) be the Liouville function. We find a nontrivial upper bound for the sum The main tool we use is Vaughan’s identity for λ(n).
@article{bwmeta1.element.doi-10_2478_s11533-010-0092-6, author = {Qingfeng Sun}, title = {Nonlinear exponential twists of the Liouville function}, journal = {Open Mathematics}, volume = {9}, year = {2011}, pages = {328-337}, zbl = {1276.11138}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0092-6} }
Qingfeng Sun. Nonlinear exponential twists of the Liouville function. Open Mathematics, Tome 9 (2011) pp. 328-337. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0092-6/
[1] Davenport H., Multiplicative Number Theory, 2nd ed., Grad. Texts in Math., 74, Springer, New York-Berlin, 1980 | Zbl 0453.10002
[2] Iwaniec H., Kowalski E., Analytic Number Theory, Amer. Math. Soc. Colloq. Publ., 53, American Mathematical Society, Providence, 2004 | Zbl 1059.11001
[3] Iwaniec H., Luo W., Sarnak P., Low lying zeros of families of L-functions, Inst. Hautes Études Sci. Publ. Math., 2000, 91, 55–131 http://dx.doi.org/10.1007/BF02698741 | Zbl 1012.11041
[4] Murty M.R., Sankaranarayanan A., Averages of exponential twists of the Liouville function, Forum Math., 2002, 14(2), 273–291 http://dx.doi.org/10.1515/form.2002.012 | Zbl 1012.11076
[5] Pi Q.H., Sun Q.F., Oscillations of cusp form coefficients in exponential sums, Ramanujan J., 2010, 21(1), 53–64 http://dx.doi.org/10.1007/s11139-008-9151-z | Zbl 1245.11057
[6] Ren X.M., Vinogradov’s exponential sums over primes, Acta Arith., 2006, 124(3), 269–285 http://dx.doi.org/10.4064/aa124-3-5
[7] Sun Q.F., On cusp form coefficients in nonlinear exponential sums, Q. J. Math., 2010, 61(3), 363–372 http://dx.doi.org/10.1093/qmath/hap008 | Zbl 1245.11059
[8] Titchmarsh E.C., The Theory of the Riemann Zeta-Function, 2nd ed., University Press, New York, 1986 | Zbl 0601.10026
[9] Vinogradov I.M., Special Variants of the Method of Trigonometric Sums, Nauka, Moscow, 1976 (in Russian), English translation in: Vinogradov I.M., Selected Works, Springer, Berlin, 1985 | Zbl 0429.10023
[10] Zhao L.Y., Oscillations of Hecke eigenvalues at shifted primes, Rev. Mat. Iberoam., 2006, 22(1), 323–337 | Zbl 1170.11024