Invariants and Bonnet-type theorem for surfaces in ℝ4
Georgi Ganchev ; Velichka Milousheva
Open Mathematics, Tome 8 (2010), p. 993-1008 / Harvested from The Polish Digital Mathematics Library

In the tangent plane at any point of a surface in the four-dimensional Euclidean space we consider an invariant linear map ofWeingarten-type and find a geometrically determined moving frame field. Writing derivative formulas of Frenet-type for this frame field, we obtain eight invariant functions. We prove a fundamental theorem of Bonnet-type, stating that these eight invariants under some natural conditions determine the surface up to a motion. We show that the basic geometric classes of surfaces in the four-dimensional Euclidean space, determined by conditions on their invariants, can be interpreted in terms of the properties of two geometric figures: the tangent indicatrix, which is a conic in the tangent plane, and the normal curvature ellipse. We construct a family of surfaces with flat normal connection.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:269071
@article{bwmeta1.element.doi-10_2478_s11533-010-0073-9,
     author = {Georgi Ganchev and Velichka Milousheva},
     title = {Invariants and Bonnet-type theorem for surfaces in $\mathbb{R}$4},
     journal = {Open Mathematics},
     volume = {8},
     year = {2010},
     pages = {993-1008},
     zbl = {1213.53010},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0073-9}
}
Georgi Ganchev; Velichka Milousheva. Invariants and Bonnet-type theorem for surfaces in ℝ4. Open Mathematics, Tome 8 (2010) pp. 993-1008. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0073-9/

[1] Asperti A.C., Some generic properties of Riemannian immersions, Bol. Soc. Brasil. Mat., 1980, 11(2), 191–216 http://dx.doi.org/10.1007/BF02584637 | Zbl 0573.53029

[2] Burstall F., Ferus D., Leschke K., Pedit F., Pinkall U., Conformal Geometry of Surfaces in S 4 and Quaternions, Lecture Notes in Math., 1772, Springer, New York, 2002 | Zbl 1033.53001

[3] Chen B.-Y., Geometry of Submanifolds, Pure and Applied Mathematics, 22, Marcel Dekker, New York, 1973

[4] Chen B.-Y., Classification of Wintgen ideal surfaces in Euclidean 4-space with equal Gauss and normal curvatures, Ann. Global Anal. Geom., 2010, 38(2), 145–160 http://dx.doi.org/10.1007/s10455-010-9205-5 | Zbl 1203.53005

[5] Dajczer M., Tojeiro R., All superconformal surfaces in ℝ4 in terms of minimal surfaces, Math. Z., 2009, 261(4), 869–890 http://dx.doi.org/10.1007/s00209-008-0355-0 | Zbl 1163.53035

[6] Eisenhart L.P., Minimal surfaces in Euclidean four-space, Amer. J. Math., 1912, 34(3), 215–236 http://dx.doi.org/10.2307/2370220 | Zbl 43.0732.01

[7] Ganchev G., Milousheva V., On the theory of surfaces in the four-dimensional Euclidean space, Kodai Math. J., 2008, 31(2), 183–198 http://dx.doi.org/10.2996/kmj/1214442794 | Zbl 1165.53003

[8] Ganchev G., Milousheva V., Invariants of lines on surfaces in ℝ4, C. R. Acad. Bulgare Sci., 2010, 63(6), 835–842 | Zbl 1224.53013

[9] Ganchev G., Milousheva V., Minimal surfaces in the four-dimensional Euclidean space preprint available at http://arxiv.org/abs/0806.3334v1 | Zbl 1296.53033

[10] Garcia R., Sotomayor J., Lines of axial curvatures on surfaces immersed in ℝ4, Differential Geom. Appl., 2000, 12(3), 253–269 http://dx.doi.org/10.1016/S0926-2245(00)00015-2

[11] Gheysens L., Verheyen P., Verstraelen L., Sur les surfaces A ou les surfaces de Chen, C. R. Acad. Sci. Paris, Sér. I Math., 1981, 292(19), 913–916

[12] Gheysens L., Verheyen P., Verstraelen L., Characterization and examples of Chen submanifolds, J. Geom., 1983, 20(1), 47–62 http://dx.doi.org/10.1007/BF01917994 | Zbl 0518.53023

[13] Guadalupe I.V., Rodriguez L., Normal curvature of surfaces in space forms, Pacific J. Math., 1983, 106(1), 95–103 | Zbl 0515.53044

[14] Kommerell K., Riemannsche Flächen im ebenen Raum von vier Dimensionen, Math. Ann., 1905, 60(4), 546–596 http://dx.doi.org/10.1007/BF01561096

[15] Little J.A., On singularities of submanifolds of higher dimensional Euclidean spaces, Ann. Mat. Pura Appl., 1969, 83, 261–335 http://dx.doi.org/10.1007/BF02411172 | Zbl 0187.18903

[16] Mello L.F., Orthogonal asymptotic lines on surfaces immersed in ℝ4, Rocky Mountain J. Math., 2009, 39(5), 1597–1612 http://dx.doi.org/10.1216/RMJ-2009-39-5-1597 | Zbl 1178.53006

[17] Petrović-Torgašev M., Verstraelen L., On Deszcz symmetries of Wintgen ideal submanifolds, Arch. Math. (Brno), 2008, 44(1), 57–67 | Zbl 1212.53028

[18] Schouten J.A., Struik D.J., Einführung in die Neueren Methoden der Differentialgeometrie II, Noordhoff, Batavia-Groningen, 1938 | Zbl 0019.18301

[19] Spivak M., Introduction to Comprehensive Differential Geometry, vol. I, V, 3rd ed., Publish or Perish, Berkeley, 1999

[20] Wilson E.B., Moore C.L.E., A general theory of surfaces, Proc. Nat. Acad. Sci. U.S.A., 1916, 2(5), 273–278 http://dx.doi.org/10.1073/pnas.2.5.273

[21] Wilson E.B., Moore C.L.E., Differential geometry of two-dimensional surfaces in hyperspaces, Proc. Am. Acad. Arts Sci., 1916, 52, 269–368

[22] Wintgen P., Sur l’inégalité de Chen-Willmore, C. R. Acad. Sci. Paris Sér. A, 1979, 288(21), 993–995

[23] Wong Y.-C., A new curvature theory for surfaces in a Euclidean 4-space, Comment. Math. Helv., 1952, 26(1), 152–170 http://dx.doi.org/10.1007/BF02564298 | Zbl 0048.15102