Equalities for orthogonal projectors and their operations
Yongge Tian
Open Mathematics, Tome 8 (2010), p. 855-870 / Harvested from The Polish Digital Mathematics Library

A complex square matrix A is called an orthogonal projector if A 2 = A = A*, where A* denotes the conjugate transpose of A. In this paper, we give a comprehensive investigation to matrix expressions consisting of orthogonal projectors and their properties through ranks of matrices. We first collect some well-known rank formulas for orthogonal projectors and their operations, and then establish various new rank formulas for matrix expressions composed by orthogonal projectors. As applications, we derive necessary and sufficient conditions for various equalities for orthogonal projectors and their operations to hold.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:269712
@article{bwmeta1.element.doi-10_2478_s11533-010-0057-9,
     author = {Yongge Tian},
     title = {Equalities for orthogonal projectors and their operations},
     journal = {Open Mathematics},
     volume = {8},
     year = {2010},
     pages = {855-870},
     zbl = {1223.15010},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0057-9}
}
Yongge Tian. Equalities for orthogonal projectors and their operations. Open Mathematics, Tome 8 (2010) pp. 855-870. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0057-9/

[1] Afriat S.N., Orthogonal and oblique projectors and the characteristics of pairs of vector spaces, Math. Proc. Cambridge Philos. Soc., 1957, 53(4), 800–816 http://dx.doi.org/10.1017/S0305004100032916

[2] Anderson W.N.,Jr., Duffin R.J., Series and parallel addition of matrices, J. Math. Anal. Appl., 1969, 26(3), 576–594 http://dx.doi.org/10.1016/0022-247X(69)90200-5

[3] Baksalary J.K., Algebraic characterizations and statistical implications of the commutativity of orthogonal projectors, In: Proceedings of the 2nd International Tampere Conference in Statistics, University of Tampere, Tampere, Finland, 1987, 113–142

[4] Baksalary J.K., Baksalary O.M., Idempotency of linear combinations of two idempotent matrices, Linear Algebra Appl., 2000, 321(1–3), 3–7 http://dx.doi.org/10.1016/S0024-3795(00)00225-1 | Zbl 0984.15021

[5] Baksalary J.K., Styan G.P.H., Around a formula for the rank of a matrix product with some statistical applications, In: Graphs, Matrices, and Designs: Festschrift in Honor of Norman J. Pullman, Lecture Notes in Pure and Applied Mathematics, 139, Marcel Dekker, New York, 1993, 1–18 | Zbl 0850.62628

[6] Ben-Israel A., Greville T.N.E., Generalized Inverses: Theory and Applications, 2nd ed., Springer, New York, 2003 | Zbl 1026.15004

[7] Benitez J., Rakocěvić V., Applications of CS decomposition in linear combinations of two orthogonal projectors, Appl. Math. Comput., 2008, 203(2), 761–769 http://dx.doi.org/10.1016/j.amc.2008.05.053 | Zbl 1157.15010

[8] Benitez J., Thome N., Characterizations and linear combinations of k-generalized projectors, Linear Algebra Appl., 2005, 410, 150–159 http://dx.doi.org/10.1016/j.laa.2005.03.007 | Zbl 1086.15502

[9] Benitez J., Thome N., k-group periodic matrices, SIAM J. Matrix Anal. Appl., 2006, 28(1), 9–25 http://dx.doi.org/10.1137/S0895479803437384 | Zbl 1116.15004

[10] Bernstein D.S., Matrix Mathematics, 2nd ed., Princeton University Press, Princeton, 2009

[11] Berube J., Hartwig R.E., Styan G.P.H., On canonical correlations and the degrees of non-orthogonality in the threeway layout, In: Statistical Sciences and Data Analysis, Proceedings of the Third Pacific Area Statistical Conference, Makuhari (Chiba, Tokyo), Japan, December 11–13, 1991, VSP, Utrecht, 1993, 247–252 | Zbl 0858.62045

[12] Björck A., Numerical Methods for Least Squares Problems, SIAM, Philadelphia, 1996

[13] Campbell S.L., Meyer C.D.,Jr., Generalized Inverses of Linear Transformations, Dover, New York, 1991 | Zbl 0732.15003

[14] Cheng S., Tian Y., Moore-Penrose inverses of products and differences of orthogonal projectors, Acta Sci. Math. (Szeged), 2003, 69(3–4), 533–542 | Zbl 1052.15006

[15] De Moor B.L.R., Golub G.H., The restricted singular value decomposition: properties and applications, SIAM J. Matrix Anal. Appl., 1991, 12(3), 401–425 http://dx.doi.org/10.1137/0612029 | Zbl 0738.15006

[16] Galperin A.M., Waksman Z., On pseudo-inverses of operator products, Linear Algebra Appl., 1980, 33, 123–131 http://dx.doi.org/10.1016/0024-3795(80)90101-9

[17] Greville T.N.E., Solutions of the matrix equation XAX = X, and relations between oblique and orthogonal projectors, SIAM J. Appl. Math., 1974, 26(4), 828–832 http://dx.doi.org/10.1137/0126074 | Zbl 0288.15018

[18] Groß J., On the product of orthogonal projectors, Linear Algebra Appl., 1999, 289(1–3), 141–150 | Zbl 0945.15015

[19] Izumino S., The product of operators with closed range and an extension of the reverse order law, Tohoku Math. J., 1982, 34(1), 43–52 http://dx.doi.org/10.2748/tmj/1178229307 | Zbl 0481.47001

[20] Marsaglia G., Styan G.P.H., Equalities and inequalities for ranks of matrices, Linear and Multilinear Algebra, 1974/75, 2(3), 269–292 http://dx.doi.org/10.1080/03081087408817070 | Zbl 0297.15003

[21] Penrose R., A generalized inverse for matrices, Math. Proc. Cambridge Philos. Soc., 1955, 51(3), 406–413 http://dx.doi.org/10.1017/S0305004100030401 | Zbl 0065.24603

[22] Rao C.R., Yanai H., General definition and decomposition of projector and some applications to statistical problems, J. Statist. Plann. Inference, 1979, 3(1), 1–17 http://dx.doi.org/10.1016/0378-3758(79)90038-7

[23] Spitkovsky I., Once more on algebras generated by two projections, Linear Algebra Appl., 1994, 208/209, 377–395 http://dx.doi.org/10.1016/0024-3795(94)90450-2 | Zbl 0803.46070

[24] Spitkovsky I.M., On polynomials in two projections, Electron. J. Linear Algebra, 2006, 15, 154–158 | Zbl 1092.15011

[25] Tian Y., The maximal and minimal ranks of some expressions of generalized inverses of matrices, Southeast Asian Bull. Math., 2002, 25(4), 745–755 http://dx.doi.org/10.1007/s100120200015 | Zbl 1007.15005

[26] Tian Y., Rank equalities for block matrices and their Moore-Penrose inverses, Houston J. Math., 2004, 30(4), 483–510 | Zbl 1057.15006

[27] Tian Y., Using rank formulas to characterize equalities for Moore-Penrose inverses of matrix products, Appl. Math. Comput., 2004, 147(2), 581–600 http://dx.doi.org/10.1016/S0096-3003(02)00796-8 | Zbl 1037.15003

[28] Tian Y., More on maximal and minimal ranks of Schur complements with applications, Appl. Math. Comput., 2004, 152(3), 675–692 http://dx.doi.org/10.1016/S0096-3003(03)00585-X | Zbl 1077.15005

[29] Tian Y., Problem 753: A rank identity, solved by M. Bataille and other seven solvers, College J. Math., 2004, 35, 230

[30] Tian Y., On mixed-type reverse-order laws for the Moore-Penrose inverse of a matrix product, Internat. J. Math. Math. Sci., 2004, 58, 3103–3116 http://dx.doi.org/10.1155/S0161171204301183 | Zbl 1075.15011

[31] Tian Y., The equivalence between (AB)† = B †A † and other mixed-type reverse-order laws, Internat. J. Math. Ed. Sci. Tech., 2006, 37(3), 331–339 http://dx.doi.org/10.1080/00207390500226168 | Zbl 1274.15019

[32] Tian Y., Cheng S., The maximal and minimal ranks of A − BXC with applications, New York J. Math., 2003, 9, 345–362 | Zbl 1036.15004

[33] Tian Y., Styan G.P.H., Rank equalities for idempotent and involutory matrices, Linear Algebra Appl., 2001, 335, 101–117 http://dx.doi.org/10.1016/S0024-3795(01)00297-X | Zbl 0988.15002

[34] Tian Y., Styan G.P.H., A new rank formula for idempotent matrices with applications, Comment. Math. Univ. Carolin., 2002, 43(2), 379–384 | Zbl 1090.15001

[35] Tian Y., Takane Y., On sum decompositions of weighted least-squares estimators for the partitioned linear model, Comm. Statist. Theory Methods, 2008, 37(1–2), 55–69 http://dx.doi.org/10.1080/03610920701648862 | Zbl 1139.62029