On the hierarchies of higher order mKdV and KdV equations
Axel Grünrock
Open Mathematics, Tome 8 (2010), p. 500-536 / Harvested from The Polish Digital Mathematics Library

The Cauchy problem for the higher order equations in the mKdV hierarchy is investigated with data in the spaces H^sr defined by the norm v0H^sr:=ξsv0^Lξr',ξ=1+ξ212,1r+1r'=1 . Local well-posedness for the jth equation is shown in the parameter range 2 ≥ 1, r > 1, s ≥ 2j-12r' . The proof uses an appropriate variant of the Fourier restriction norm method. A counterexample is discussed to show that the Cauchy problem for equations of this type is in general ill-posed in the C 0-uniform sense, if s < 2j-12r' . The results for r = 2 - so far in the literature only if j = 1 (mKdV) or j = 2 - can be combined with the higher order conservation laws for the mKdV equation to obtain global well-posedness of the jth equation in H s(ℝ) for s ≥ j+12 , if j is odd, and for s ≥ j2 , if j is even. - The Cauchy problem for the jth equation in the KdV hierarchy with data in H^sr cannot be solved by Picard iteration, if r > 2j2j-1 , independent of the size of s ∈ ℝ. Especially for j ≥ 2 we have C 2-ill-posedness in H s(ℝ). With similar arguments as used before in the mKdV context it is shown that this problem is locally well-posed in H^sr , if 1 < r ≤ 2j2j-1 and s>j-32-12j+2j-12r' . For KdV itself the lower bound on s is pushed further down to s>max-12-12r'-14-118r' , where r ∈ (1,2). These results rely on the contraction mapping principle, and the flow map is real analytic.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:269252
@article{bwmeta1.element.doi-10_2478_s11533-010-0024-5,
     author = {Axel Gr\"unrock},
     title = {On the hierarchies of higher order mKdV and KdV equations},
     journal = {Open Mathematics},
     volume = {8},
     year = {2010},
     pages = {500-536},
     zbl = {1205.35253},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0024-5}
}
Axel Grünrock. On the hierarchies of higher order mKdV and KdV equations. Open Mathematics, Tome 8 (2010) pp. 500-536. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-010-0024-5/

[1] Adler M., Moser J., On a class of polynomials connected with the Korteweg-de Vries equation, Comm. Math. Phys., 1978, 61, 1–30 http://dx.doi.org/10.1007/BF01609465 | Zbl 0428.35067

[2] Avramidi I., Schimming R., A new explicit expression for the Korteweg-de Vries hierarchy, Math. Nachr., 2000, 219, 45–64 http://dx.doi.org/10.1002/1522-2616(200011)219:1<45::AID-MANA45>3.0.CO;2-S | Zbl 0984.37084

[3] Banica V., Vega L., On the Dirac delta as initial condition for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2008, 25, 697–711 http://dx.doi.org/10.1016/j.anihpc.2007.03.007 | Zbl 1147.35092

[4] Cazenave T., Semilinear Schrödinger equations. Courant Lecture Notes in Mathematics, 10, New York University, Courant Institute of Mathematical Sciences, New York, American Mathematical Society, Providence, RI, 2003

[5] Cazenave T., Vega L., Vilela M.C., A note on the nonlinear Schrödinger equation in weak L p spaces, Commun. Contemp. Math., 2001, 3, 153–162 http://dx.doi.org/10.1142/S0219199701000317 | Zbl 0991.35084

[6] Chern S.S., Peng C.K., Lie groups and KdV equations, Manuscripta Math., 1979, 28, 207–217 http://dx.doi.org/10.1007/BF01647972 | Zbl 0408.35074

[7] Christ M., Colliander J., Tao T., Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations, Amer. J. Math., 2003, 125, 1235–1293 http://dx.doi.org/10.1353/ajm.2003.0040 | Zbl 1048.35101

[8] Christ M., Kiselev A., Maximal functions associated to filtrations, J. Funct. Anal., 2001, 179, 409–425 http://dx.doi.org/10.1006/jfan.2000.3687 | Zbl 0974.47025

[9] Colliander J., Keel M., Staffilani G., Takaoka H., Tao T., Sharp global well-posedness for KdV and modified KdV on ℝ and 𝕋 , J. Amer. Math. Soc., 2003, 16, 705–749 http://dx.doi.org/10.1090/S0894-0347-03-00421-1

[10] Fefferman C., Inequalities for strongly singular convolution operators, Acta Math., 1970, 124, 9–36 http://dx.doi.org/10.1007/BF02394567 | Zbl 0188.42601

[11] Foschi D., Inhomogeneous Strichartz estimates, J. Hyperbolic Differ. Equ., 2005, 2, 1–24 http://dx.doi.org/10.1142/S0219891605000361 | Zbl 1071.35025

[12] Gardner C.S., Greene J.M., Kruskal M.D., Miura R.M., Korteweg-deVries equation and generalization, VI, Methods for exact solution, Comm. Pure Appl. Math., 1974, 27, 97–133 http://dx.doi.org/10.1002/cpa.3160270108 | Zbl 0291.35012

[13] Gardner C.S., Korteweg-de Vries equation and generalizations, IV, The Korteweg-de Vries equation as a Hamiltonian system, J. Mathematical Phys., 1971, 12, 1548–1551 http://dx.doi.org/10.1063/1.1665772 | Zbl 0283.35021

[14] Ginibre J., Tsutsumi Y., Velo G., On the Cauchy Problem for the Zakharov System, J. Funct. Anal., 1997, 151, 384–436 http://dx.doi.org/10.1006/jfan.1997.3148 | Zbl 0894.35108

[15] Grünrock A., An improved local well-posedness result for the modified KdV equation, Int. Math. Res. Not., 2004, 61, 3287–3308 http://dx.doi.org/10.1155/S1073792804140981 | Zbl 1072.35161

[16] Grünrock A., Bi- and trilinear Schrödinger estimates in one space dimension with applications to cubic NLS and DNLS, Int. Math. Res. Not., 2005, 41, 2525–2558 http://dx.doi.org/10.1155/IMRN.2005.2525 | Zbl 1088.35063

[17] Grünrock A., Herr S., Low regularity local well-posedness of the derivative nonlinear Schrödinger equation with periodic initial data, SIAM J. Math. Anal., 2008, 39, 1890–1920 http://dx.doi.org/10.1137/070689139 | Zbl 1156.35471

[18] Grünrock A., Vega L., Local well-posedness for the modified KdV equation in almost critical Hsr^ -spaces, Trans. Amer. Math. Soc., 2009, 361, 5681–5694 http://dx.doi.org/10.1090/S0002-9947-09-04611-X | Zbl 1182.35197

[19] Hörmander L., The analysis of linear partial differential operators, II, Differential operators with constant coefficients, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 257, Springer-Verlag, Berlin, 1983

[20] Kenig C.E., Ponce G., Vega L., Oscillatory Integrals and Regularity of Dispersive Equations, Indiana Univ. Math. J., 1991, 40, 33–69 http://dx.doi.org/10.1512/iumj.1991.40.40003 | Zbl 0738.35022

[21] Kenig C.E., Ponce G., Vega L., Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., 1993, 46, 527–620 http://dx.doi.org/10.1002/cpa.3160460405 | Zbl 0808.35128

[22] Kenig C.E., Ponce G., Vega L., On the hierarchy of the generalized KdV equations, In: Ercolani N.M., Gabitov I.R., Levermore C.D., Serre D. (Eds.), Singular limits of dispersive waves, Proceedings of the NATO Advanced Research Workshop (École Normale Supérieure, Lyon, July 8–12, 1991), NATO Adv. Sci. Inst. Ser. B Phys., 1994, 320, 347–356 | Zbl 0849.35121

[23] Kenig C.E., Ponce G., Vega L., Higher-order nonlinear dispersive equations, Proc. Amer. Math. Soc., 1994, 122, 157–166 http://dx.doi.org/10.2307/2160855 | Zbl 0810.35122

[24] Kenig C.E., Ponce G., Vega L., A bilinear estimate with applications to the KdV equation, J. Amer. Math. Soc., 1996, 9, 573–603 http://dx.doi.org/10.1090/S0894-0347-96-00200-7 | Zbl 0848.35114

[25] Kenig C.E., Ponce G., Vega L., Quadratic forms for the 1 - D semilinear Schrödinger equation, Trans. Amer. Math. Soc., 1996, 348, 3323–3353 http://dx.doi.org/10.1090/S0002-9947-96-01645-5 | Zbl 0862.35111

[26] Kenig C.E., Ponce G., Vega L., On the illposedness of some canonical dispersive equations, Duke Math. J., 2001, 106, 617–633 http://dx.doi.org/10.1215/S0012-7094-01-10638-8 | Zbl 1034.35145

[27] Koch H., Tzvetkov N., On the local well-posedness of the Benjamin-Ono equation in H s(ℝ), Int. Math. Res. Not., 2003, 26, 1449–1464 http://dx.doi.org/10.1155/S1073792803211260 | Zbl 1039.35106

[28] Kruskal M.D., Miura R.M., Gardner C.S., Zabusky N.J., Korteweg-de Vries equation and generalizations, V, Uniqueness and nonexistence of polynomial conservation laws, J. Math. Phys., 1970, 11, 952–960 http://dx.doi.org/10.1063/1.1665232 | Zbl 0283.35022

[29] Kwon S., On the fifth-order KdV equation: local well-posedness and lack of uniform continuity of the solution map, J. Differential Equations, 2008, 245, 2627–2659 http://dx.doi.org/10.1016/j.jde.2008.03.020 | Zbl 1153.35067

[30] Kwon S., Well-posedness and ill-posedness of the fifth-order modified KdV equation, Electron. J. Differential Equations, 2008, 01, 15 pp. | Zbl 1133.35085

[31] Lax P.D., Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math., 1968, 21, 467–490 http://dx.doi.org/10.1002/cpa.3160210503 | Zbl 0162.41103

[32] Lax P.D., Periodic solutions of the KdV equation, Comm. Pure Appl. Math., 1975, 28, 141–188 | Zbl 0295.35004

[33] Lax P.D., Almost periodic solutions of the KdV equation, SIAM Rev., 1976, 18, 351–375 http://dx.doi.org/10.1137/1018074 | Zbl 0329.35015

[34] Lax P.D., Outline of a theory of the KdV equation, In: Ruggeri T. (Ed.), Recent mathematical methods in nonlinear wave propagation, Lecture Notes in Mathematics, 1640, Springer, Berlin, 1996 http://dx.doi.org/10.1007/BFb0093707

[35] Linares F., A higher order modified Korteweg-de Vries equation, Mat. Apl. Comput., 1995, 14, 253–267 | Zbl 0842.35105

[36] Matsuno Y., Bilinear transformation method, Academic Press, Inc., Orlando, FL, 1984 | Zbl 0552.35001

[37] Miura R.M., Korteweg-de Vries equation and generalizations, I, A remarkable explicit nonlinear transformation., J. Math. Phys., 1968, 9, 1202–1204 http://dx.doi.org/10.1063/1.1664700 | Zbl 0283.35018

[38] Miura R.M., Gardner C.S., Kruskal M.D., Korteweg-de Vries equation and generalizations, II, Existence of conservation laws and constants of motion, J. Math. Phys., 1968, 9, 1204–1209 http://dx.doi.org/10.1063/1.1664701 | Zbl 0283.35019

[39] Molinet L., Saut J.-C., Tzvetkov N., Ill-posedness issues for the Benjamin-Ono and related equations, SIAM J. Math. Anal., 2001, 33, 982–988 http://dx.doi.org/10.1137/S0036141001385307 | Zbl 0999.35085

[40] Olver P.J., Evolution equations possessing infinitely many symmetries, J. Math. Phys., 1977, 18, 1212–1215 http://dx.doi.org/10.1063/1.523393 | Zbl 0348.35024

[41] Ovcharov E., Global regularity of nonlinear dispersive equations and Strichartz estimates, PhD thesis, University of Edinburgh, Edinburgh, UK, 2009

[42] Perelman G., Vega L., Self-similar planar curves related to modified Korteweg-de Vries equation, J. Differential Equations, 2007, 235, 56–73 http://dx.doi.org/10.1016/j.jde.2006.12.018 | Zbl 1124.35076

[43] Pilod D., On the Cauchy problem for higher-order nonlinear dispersive equations, J. Differential Equations, 2008, 245, 2055–2077 http://dx.doi.org/10.1016/j.jde.2008.07.017 | Zbl 1152.35017

[44] Ponce G., Lax pairs and higher order models for water waves, J. Differential Equations, 1993, 102, 360–381 http://dx.doi.org/10.1006/jdeq.1993.1034 | Zbl 0796.35148

[45] Saut J.-C., Quelques generalisations de l’equation de Korteweg - de Vries, II, J. Differential Equations, 1979, 33, 320–335 (in French) http://dx.doi.org/10.1016/0022-0396(79)90068-8

[46] Sjölin P., Regularity of solutions to the Schrödinger equation, Duke Math. J., 1987, 55, 699–715 http://dx.doi.org/10.1215/S0012-7094-87-05535-9 | Zbl 0631.42010

[47] Taggart R.J., Inhomogeneous Strichartz estimates, preprint available at arXiv:0802.4120

[48] Vargas A., Vega L., Global wellposedness for 1D nonlinear Schrödinger equation for data with an infinite L 2 norm, J. Math. Pures Appl. (9), 2001, 80, 1029–1044 http://dx.doi.org/10.1016/S0021-7824(01)01224-7 | Zbl 1027.35134

[49] Vilela M.C., Inhomogeneous Strichartz estimates for the Schrödinger equation, Trans. Amer. Math. Soc., 2007, 359, 2123–2136 http://dx.doi.org/10.1090/S0002-9947-06-04099-2 | Zbl 1196.35074

[50] Zheng Y.K., Chan W.L., Gauge transformation and the higher order Korteweg-de Vries equation, J. Math. Phys., 1988, 29, 308–314 http://dx.doi.org/10.1063/1.528068 | Zbl 0695.35186