On set-valued cone absolutely summing maps
Coenraad Labuschagne ; Valeria Marraffa
Open Mathematics, Tome 8 (2010), p. 148-157 / Harvested from The Polish Digital Mathematics Library

Spaces of cone absolutely summing maps are generalizations of Bochner spaces L p(μ, Y), where (Ω, Σ, μ) is some measure space, 1 ≤ p ≤ ∞ and Y is a Banach space. The Hiai-Umegaki space 1,cbf(X) of integrably bounded functions F: Ω → cbf(X), where the latter denotes the set of all convex bounded closed subsets of a separable Banach space X, is a set-valued analogue of L 1(μ, X). The aim of this work is to introduce set-valued cone absolutely summing maps as a generalization of 1,cbf(X) , and to derive necessary and sufficient conditions for a set-valued map to be such a set-valued cone absolutely summing map. We also describe these set-valued cone absolutely summing maps as those that map order-Pettis integrable functions to integrably bounded set-valued functions.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:269210
@article{bwmeta1.element.doi-10_2478_s11533-009-0059-7,
     author = {Coenraad Labuschagne and Valeria Marraffa},
     title = {On set-valued cone absolutely summing maps},
     journal = {Open Mathematics},
     volume = {8},
     year = {2010},
     pages = {148-157},
     zbl = {1185.28019},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0059-7}
}
Coenraad Labuschagne; Valeria Marraffa. On set-valued cone absolutely summing maps. Open Mathematics, Tome 8 (2010) pp. 148-157. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0059-7/

[1] Belanger A., Dowling P.N., Two remarks on absolutely summing operators, Math. Nachr., 1988, 136, 229–232 http://dx.doi.org/10.1002/mana.19881360115 | Zbl 0654.47009

[2] Chaney J., Banach lattices of compact maps, Math. Z., 1972, 129, 1–19 http://dx.doi.org/10.1007/BF01229536 | Zbl 0231.46020

[3] Diestel J., An elementary characterization of absolutely summing operators, Math. Ann., 1972, 196, 101–105 http://dx.doi.org/10.1007/BF01419607 | Zbl 0221.46040

[4] Diestel J., Uhl J.J., Vector measures, A.M.S. Surveys, Vol. 15, Providence, Rhode Island, 1977 | Zbl 0369.46039

[5] Dinculeanu N., Integral representation of linear operators, Stud. Cerc. Mat., 1966, 18, 349–385, 483–536 | Zbl 0156.14803

[6] Hiai F., Umegaki H., Integrals, conditional expectations, and martingales of multivalued functiones, Journal of Multivariate Analysis, 1977, 7, 149–182 http://dx.doi.org/10.1016/0047-259X(77)90037-9 | Zbl 0368.60006

[7] Jeurnink G.A.M., Integration of functions with values in a Banach lattice, PhD Thesis, University of Nijmegen, The Netherlands, 1982

[8] Labuschagne C.C.A., Pinchuck A.L., van Alten C.J., A vector lattice version of Rådström’s embedding theorem, Quaestiones Mathematicae, 2007, 30, 285–308 | Zbl 1144.06009

[9] Li S., Ogura Y., Kreinovich V., Limit theorems and applications of set-valued and fuzzy set-valued random variables, Kluwer Acadenic Press, Dordrecht-Boston-London, 2002

[10] Marraffa V., A characterization of absolutely summing operators by means of McShane integrable functions, J. Math. Anal. Appl., 2004, 239, 71–78 http://dx.doi.org/10.1016/j.jmaa.2003.12.029 | Zbl 1087.47023

[11] Meyer-Nieberg P., Banach lattices, Springer Verlag, Berlin-Heidelberg-New York, 1991 | Zbl 0743.46015

[12] Rådström H., An embedding theorem for spaces of convex sets, Proc. Amer. Math. Soc., 1952, 3, 165–169 http://dx.doi.org/10.2307/2032477 | Zbl 0046.33304

[13] Rodríguez J., Absolutely summing operators and integration of vector-valued functions, J. Math. Anal. Appl., 2006, 316, 579–600 http://dx.doi.org/10.1016/j.jmaa.2005.05.001 | Zbl 1097.46028

[14] Schaefer H.H., Banach lattices and positive operators, Springer-Verlag, Berlin-Heidelberg-New York, 1974 | Zbl 0296.47023

[15] Zaanen A.C., Introduction to operator theory in Riesz spaces, Springer-Verlag, Berlin Heidelberg New York, 1997 | Zbl 0878.47022