Finiteness theorems for algebraic cycles of small codimension on quadric fibrations over curves
Cristian González-Avilés
Open Mathematics, Tome 7 (2009), p. 606-616 / Harvested from The Polish Digital Mathematics Library

We obtain finiteness theorems for algebraic cycles of small codimension on quadric fibrations over curves over perfect fields. For example, if k is finitely generated over ℚ and X → C is a quadric fibration of odd relative dimension at least 11, then CH i(X) is finitely generated for i ≤ 4.

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:269438
@article{bwmeta1.element.doi-10_2478_s11533-009-0043-2,
     author = {Cristian Gonz\'alez-Avil\'es},
     title = {Finiteness theorems for algebraic cycles of small codimension on quadric fibrations over curves},
     journal = {Open Mathematics},
     volume = {7},
     year = {2009},
     pages = {606-616},
     zbl = {1184.14015},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0043-2}
}
Cristian González-Avilés. Finiteness theorems for algebraic cycles of small codimension on quadric fibrations over curves. Open Mathematics, Tome 7 (2009) pp. 606-616. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0043-2/

[1] Colliot-Thélène J.-L, Skorobogatov A., Groupe de Chow des zéro-cycles sur les fibrés en quadriques, K-Theory, 1993, 7, 477–500 http://dx.doi.org/10.1007/BF00961538[Crossref] | Zbl 0837.14002

[2] Conrad B., Chows K/k-image and K/k-trace, and the Lang-Néron theorem, Enseign. Math. (2), 2006, 52, 37–108

[3] Fulton W., Intersection theory, Second Ed., Springer-Verlag, 1998 | Zbl 0885.14002

[4] González-Avilés C, Algebraic cycles on Severi-Brauer schemes of prime degree over a curve, Math. Res. Lett., 2008, 15(1), 51–56 [Crossref] | Zbl 1146.14006

[5] Gros M., 0-cycles de degré zéro sur les surfaces fibrées en coniques, J. Reine Angew. Math., 1987, 373, 166–184 | Zbl 0593.14005

[6] Kahn B., Rost M., Sujatha R, Unramified cohomology of quadrics I, Amer. Math. J., 1998, 120(4), 841–891 http://dx.doi.org/10.1353/ajm.1998.0029[Crossref] | Zbl 0913.11018

[7] Karpenko N., Algebro-geometric invariants of quadratic forms, Leningrad Math. J., 1991, 2(1), 119–138

[8] Karpenko N., Chow groups of quadrics and the stabilization conjecture, Adv. Soviet Math., 1991, 4, 3–8 | Zbl 0756.14003

[9] Karpenko N., Chow groups of quadrics and index reduction formulas, Nova J. Algebra Geom., 1995, 3(4), 357–379 | Zbl 0902.14006

[10] Karpenko N., Order of torsion in CH 4 of quadrics, Doc. Math., 1996, 1, 57–65 | Zbl 0867.11025

[11] Karpenko N., Merkurjev A., Chow groups of projective quadrics, Leningrad Math. J., 1991, 2(3), 655–671

[12] Karpenko N., Merkurjev A., Rost projectors and Steenrod operations, Doc. Math., 2002, 7, 481–493 | Zbl 1030.11013

[13] Lam T.Y., The algebraic theory of quadratic forms, W.A. Benjamin, Inc. Reading, Massachussettss, 1973 | Zbl 0259.10019

[14] Milne J.S., Arithmetic Duality Theorems, Perspectives in Mathematics, vol. 1, Academic Press Inc., Orlando 1986 | Zbl 0613.14019

[15] Parimala R., Suresh V., Zero-cycles on quadric fibrations: Finiteness theorems and the cycle map, Invent. Math., 1995, 122, 83–117 http://dx.doi.org/10.1007/BF01231440[Crossref] | Zbl 0865.14002

[16] Rost M., Chow groups with coefficients, Doc. Math., 1996, 1, 319–393 | Zbl 0864.14002

[17] Sherman C., Some theorems on the K-Theory of coherent sheaves, Comm. Algebra, 1979, 7(14), 1489–1508 http://dx.doi.org/10.1080/00927877908822414[Crossref] | Zbl 0429.18017

[18] Swan R., Zero-cycles on quadric hypersurfaces, Proc. Amer. Math. Soc., 1989, 107, 43–46 http://dx.doi.org/10.2307/2048032[Crossref]

[19] Weibel C., An introduction to homological algebra, Cambridge Stud. Adv. Math., Cambridge Univ. Press, 1994, 38