A lower bound for the error term in Weyl’s law for certain Heisenberg manifolds, II
Werner Nowak
Open Mathematics, Tome 7 (2009), p. 452-462 / Harvested from The Polish Digital Mathematics Library

This article is concerned with estimations from below for the remainder term in Weyl’s law for the spectral counting function of certain rational (2ℓ + 1)-dimensional Heisenberg manifolds. Concentrating on the case of odd ℓ, it continues the work done in part I [21] which dealt with even ℓ.

Publié le : 2009-01-01
EUDML-ID : urn:eudml:doc:269041
@article{bwmeta1.element.doi-10_2478_s11533-009-0028-1,
     author = {Werner Nowak},
     title = {A lower bound for the error term in Weyl's law for certain Heisenberg manifolds, II},
     journal = {Open Mathematics},
     volume = {7},
     year = {2009},
     pages = {452-462},
     zbl = {1270.11097},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0028-1}
}
Werner Nowak. A lower bound for the error term in Weyl’s law for certain Heisenberg manifolds, II. Open Mathematics, Tome 7 (2009) pp. 452-462. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-009-0028-1/

[1] Besicovitch A.S., On the linear independence of fractional powers of integers, J. London Math. Soc., 1940, 15, 3–6 http://dx.doi.org/10.1112/jlms/s1-15.1.3 | Zbl 0026.20301

[2] Chung D., Petridis Y.N., Toth J.A., The remainder in Weyl’s law for Heisenberg manifolds II, In: Heath-Brown D.R. et al (Eds.), Proceedings of the session in analytic number theory and Diophantine equations ( January–June 2002, Bonn, Germany) Bonner Mathematische Schriften, 2003, 360 | Zbl 1175.58008

[3] Corrádi K., Kátai I., A comment on K.S. Gangadharan’s paper “Two classical lattice point problems”, Magyar Tud. Akad. Mat. Fiz. Tud. Oszt. Kozl., 1967, 17, 89–97 (in Hungarian)

[4] Cramér H., Über zwei Sätze von Herrn G.H. Hardy, Math. Z., 1922, 15, 201–210 http://dx.doi.org/10.1007/BF01494394

[5] Drmota M., Tichy R.F., Sequences, discrepancies, and applications, Lecture Notes in Math. 1651, Springer, Berlin, 1997

[6] Gangadharan K.S., Two classical lattice point problems, Math. Proc. Cambridge Philos. Soc., 1961, 57, 699–721 http://dx.doi.org/10.1017/S0305004100035830 | Zbl 0100.03901

[7] Gordon C.S., Wilson E.N., The spectrum of the Laplacian on Riemannian Heisenberg manifolds, Michigan Math. J., 1986, 33, 253–271 http://dx.doi.org/10.1307/mmj/1029003354 | Zbl 0599.53038

[8] Graham S.W., Kolesnik G., Van der Corput’s method of exponential sums, Cambridge University Press, 1991 | Zbl 0713.11001

[9] Hafner J.L., New omega results for two classical lattice point problems, Invent. Math., 1981, 63, 181–186 http://dx.doi.org/10.1007/BF01393875 | Zbl 0458.10031

[10] Hardy G.H., On the expression of a number as the sum of two squares, Quart. J. Math., 1915, 46, 263–283 | Zbl 45.1253.01

[11] Hörmander L., The spectral function of an elliptic operator, Acta Math., 1968, 121, 193–218 http://dx.doi.org/10.1007/BF02391913 | Zbl 0164.13201

[12] Huxley M.N., Area, lattice points, and exponential sums, LMS Monographs, New Ser., Oxford, 1996 | Zbl 0861.11002

[13] Huxley M.N., Exponential sums and lattice points III, Proc. London Math. Soc., 2003, 87, 591–609 http://dx.doi.org/10.1112/S0024611503014485 | Zbl 1065.11079

[14] Ivic A., Krätzel E., Kühleitner M., Nowak W.G., Lattice points in large regions and related arithmetic functions: Recent developments in a very classic topic, In: Schwarz W., Steuding J. (Eds.), Proceedings Conference on Elementary and Analytic Number Theory ELAZ’04 (24–28 May 2006, Mainz, Germany), Franz Steiner Verlag, 2006, 89–128 | Zbl 1177.11084

[15] Iwaniec H., Kowalski E., Analytic number theory, AMS Coll. Publ. 53, Providence, R.I., 2004 | Zbl 1059.11001

[16] Khosravi M., Spectral statistics for Heisenberg manifolds, Ph.D. thesis, McGill University, Montreal, Canada, 2005

[17] Khosravi M., Petridis Y.N., The remainder in Weyl’s law for n-dimensional Heisenberg manifolds, Proc. Amer. Math. Soc., 2005, 133, 3561–3571 http://dx.doi.org/10.1090/S0002-9939-05-08155-4 | Zbl 1080.35054

[18] Khosravi M., Toth J.A., Cramer’s formula for Heisenberg manifolds, Ann. Inst. Fourier, 2005, 55, 2489–2520 | Zbl 1090.58018

[19] Krätzel E., Lattice points, Berlin, Kluwer, 1988 | Zbl 0675.10031

[20] Krätzel E., Analytische Funktionen in der Zahlentheorie, Stuttgart-Leipzig-Wiesbaden, Teubner, 2000 (in German)

[21] Nowak W.G., A lower bound for the error term in Weyl’s law for certain Heisenberg manifolds, Arch. Math. (Basel), preprint available at http://arxiv.org/PS_cache/arxiv/pdf/0809/0809.3924v1.pdf | Zbl 1184.11039

[22] Petridis Y.N., Toth J.A., The remainder in Weyl’s law for Heisenberg manifolds, J. Differential Geom., 2002, 60, 455–483 | Zbl 1066.58017

[23] Soundararajan K., Omega results for the divisor and circle problems, Int. Math. Res. Not., 2003, 36, 1987–1998 http://dx.doi.org/10.1155/S1073792803130309 | Zbl 1130.11329

[24] Vaaler J.D., Some extremal problems in Fourier analysis, Bull. Amer. Math. Soc., 1985, 12, 183–216 http://dx.doi.org/10.1090/S0273-0979-1985-15349-2 | Zbl 0575.42003

[25] Zhai W., On the error term in Weyl’s law for the Heisenberg manifolds, Acta Arith., 2008, 134, 219–257 http://dx.doi.org/10.4064/aa134-3-3 | Zbl 1229.11127