Characterization of equilibrium measures for critical reversible Nearest Particle Systems
Thomas Mountford ; Li Wu
Open Mathematics, Tome 6 (2008), p. 237-261 / Harvested from The Polish Digital Mathematics Library

We show that for critical reversible attractive Nearest Particle Systems all equilibrium measures are convex combinations of the upper invariant equilibrium measure and the point mass at all zeros, provided the underlying renewal sequence possesses moments of order strictly greater than 7+412 and obeys some natural regularity conditions.

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:269317
@article{bwmeta1.element.doi-10_2478_s11533-008-0024-x,
     author = {Thomas Mountford and Li Wu},
     title = {Characterization of equilibrium measures for critical reversible Nearest Particle Systems},
     journal = {Open Mathematics},
     volume = {6},
     year = {2008},
     pages = {237-261},
     zbl = {1141.60067},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-008-0024-x}
}
Thomas Mountford; Li Wu. Characterization of equilibrium measures for critical reversible Nearest Particle Systems. Open Mathematics, Tome 6 (2008) pp. 237-261. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-008-0024-x/

[1] Andjel E., Liggett T.M., Mountford T., Clustering in one dimensional threshold voter models, Stochastic Process. Appl., 1992, 42, 73–90 http://dx.doi.org/10.1016/0304-4149(92)90027-N | Zbl 0752.60086

[2] Bezuidenhout C., Grimmett G., The critical contact process dies out, Ann. Probab., 1990, 18, 1462–1482 http://dx.doi.org/10.1214/aop/1176990627 | Zbl 0718.60109

[3] Diaconis P., Stroock D., Genmetric bounds for eigenvalues of Markov chains, Ann. Appl. Probab., 1991, 1, 36–61 http://dx.doi.org/10.1214/aoap/1177005980 | Zbl 0731.60061

[4] Griffeath D., Liggett T.M., Critical phenomena for Spitzer’s reversible nearest particle systems, Ann. Probab., 1982, 10, 881–895 http://dx.doi.org/10.1214/aop/1176993711 | Zbl 0498.60090

[5] Liggett T.M., Interacting particle systems, Springer-Verlag, New York, 1985 | Zbl 0559.60078

[6] Liggett T.M., L 2 rates of convergence for attractive reversible nearest particle systems: the critical case, Ann. Probab., 1991, 19, 935–959 http://dx.doi.org/10.1214/aop/1176990330 | Zbl 0737.60092

[7] Liggett T.M., Branching random walks and contact processes on homogenous trees, Probab. Theory Related Fields, 1996, 106, 495–519 http://dx.doi.org/10.1007/s004400050073

[8] Mountford T., A complete convergence theorem for attractive reversible nearest particle systems, Canad. J. Math., 1997, 49, 321–337 | Zbl 0891.60092

[9] Mountford T., A convergence result for critical reversible nearest particle systems, Ann. Probab., 2002, 30, 1–61 | Zbl 1061.60108

[10] Mountford T., Sweet T., Finite approximations to the critical reversible nearest particle system, Ann. Probab., 1998, 26, 1751–1780 http://dx.doi.org/10.1214/aop/1022855881 | Zbl 0966.82013

[11] Mountford T., Wu L.C., The time for a critical nearest particle system to reach equilibrium starting with a large gap, Electron. J. Probab., 2005, 10, 436–498 | Zbl 1111.60078

[12] Schinazi R., Brownian fluctuations of the edge for critical reversible nearest-particle systems, Ann. Probab., 1992, 20, 194–205 http://dx.doi.org/10.1214/aop/1176989924 | Zbl 0742.60108

[13] Sinclair A., Jerrum M., Approximate counting uniform generation and rapidly mixing Markov chains, Inform. and Comput., 1989, 82, 93–133 http://dx.doi.org/10.1016/0890-5401(89)90067-9 | Zbl 0668.05060

[14] Spitzer F., Stochastic time evolution of one dimensional infinite particle systems, Bull. Amer. Math. Soc., 1977, 83, 880–890 http://dx.doi.org/10.1090/S0002-9904-1977-14322-X | Zbl 0372.60149

[15] Sweet T.D., One dimensional spin systems, PhD thesis, University of California, Los Angeles, USA, 1997