A refined Newton’s mesh independence principle for a class of optimal shape design problems
Ioannis Argyros
Open Mathematics, Tome 4 (2006), p. 562-572 / Harvested from The Polish Digital Mathematics Library

Shape optimization is described by finding the geometry of a structure which is optimal in the sense of a minimized cost function with respect to certain constraints. A Newton’s mesh independence principle was very efficiently used to solve a certain class of optimal design problems in [6]. Here motivated by optimization considerations we show that under the same computational cost an even finer mesh independence principle can be given.

Publié le : 2006-01-01
EUDML-ID : urn:eudml:doc:269333
@article{bwmeta1.element.doi-10_2478_s11533-006-0027-4,
     author = {Ioannis Argyros},
     title = {A refined Newton's mesh independence principle for a class of optimal shape design problems},
     journal = {Open Mathematics},
     volume = {4},
     year = {2006},
     pages = {562-572},
     zbl = {1112.65061},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-006-0027-4}
}
Ioannis Argyros. A refined Newton’s mesh independence principle for a class of optimal shape design problems. Open Mathematics, Tome 4 (2006) pp. 562-572. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-006-0027-4/

[1] E.L. Allgower, K. Böhmer, F.A. Potra and W.C. Rheinboldt: “A mesh-independence principle for operator equations and their discretizations”, SIAM J. Numer. Anal., Vol. 23, (1986). | Zbl 0591.65043

[2] I.K. Argyros: “A mesh independence principle for equations and their discretizations using Lipschitz and center Lipschitz conditions, Pan”, Amer. Math. J., Vol. 14(1), (2004), pp. 69–82. | Zbl 1057.65027

[3] I.K. Argyros: “A unifying local-semilocal convergence analysis and applications for two-point Newton-like methods in Banach space”, J. Math. Anal. Appl., Vol. 298(2), (2004), pp. 374–397. http://dx.doi.org/10.1016/j.jmaa.2004.04.008 | Zbl 1057.65029

[4] I.K. Argyros: Newton Methods, Nova Science Publ. Corp., New York, 2005.

[5] L.V. Kantorovich and G.P. Akilov: Functional Analysis in Normed Spaces, Pergamon Press, Oxford, 1982.

[6] M. Laumen: “Newton’s mesh independence principle for a class of optimal design problems”, SIAM J. Control Optim., Vol. 37(4), (1999), pp. 1070–1088. http://dx.doi.org/10.1137/S0363012996303529 | Zbl 0931.65068

[7] W.C. Rheinboldt: “An adaptive continuation process for solving systems of nonlinear equations”, In: Mathematical models and Numerical Methods, Banach Center Publ., Vol. 3, PWN, Warsaw, 1978, 129–142.