Local geometry of orbits for an ordinary classical lie supergroup
Tomasz Przebinda
Open Mathematics, Tome 4 (2006), p. 449-506 / Harvested from The Polish Digital Mathematics Library

In this paper we identify a real reductive dual pair of Roger Howe with an Ordinary Classical Lie supergroup. In these terms we describe the semisimple orbits of the dual pair in the symplectic space, a slice through a semisimple element of the symplectic space, an analog of a Cartan subalgebra, the corresponding Weyl group and the corresponding Weyl integration formula.

Publié le : 2006-01-01
EUDML-ID : urn:eudml:doc:269329
@article{bwmeta1.element.doi-10_2478_s11533-006-0019-4,
     author = {Tomasz Przebinda},
     title = {Local geometry of orbits for an ordinary classical lie supergroup},
     journal = {Open Mathematics},
     volume = {4},
     year = {2006},
     pages = {449-506},
     zbl = {1141.17002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_s11533-006-0019-4}
}
Tomasz Przebinda. Local geometry of orbits for an ordinary classical lie supergroup. Open Mathematics, Tome 4 (2006) pp. 449-506. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_s11533-006-0019-4/

[1] N. Burgoyne and R. Cushman: “Conjugacy Classes in Linear Groups”, J. Algebra, Vol. 44, (1975), pp. 339–362. http://dx.doi.org/10.1016/0021-8693(77)90186-7

[2] D. Collingwood and W. McGovern: Nilpotent orbits in complex semisimple Lie algebras, Reinhold, Van Nostrand, New York, 1993. | Zbl 0972.17008

[3] A. Daszkiewicz, W. Kraśkiewicz and T. Przebinda: “Dual Pairs and Kostant-Sekiguchi Correspondence. II. Classification of Nilpotent Elements”, Centr. Eur. J. Math., Vol. 3, (2005), pp. 430–464. | Zbl 1107.22007

[4] Harish-Chandra: “Invariant Distributions on Lie algebras”, Amer. J. of Math., Vol. 86, (1964), pp. 271–309. | Zbl 0131.33302

[5] R. Howe: Analytic Preliminaries, preprint.

[6] R. Howe: “Remarks on classical invariant theory”, Trans. Amer. Math. Soc., Vol. 313, (1989), pp. 539–570 http://dx.doi.org/10.2307/2001418 | Zbl 0674.15021

[7] R. Howe: “Transcending Classical Invariant Theory”, J. Amer. Math. Soc., Vol. 2, (1989), pp. 535–552. http://dx.doi.org/10.2307/1990942 | Zbl 0716.22006

[8] V. Kac: “Lie superalgebras”, Adv. Math., Vol. 26, (1977), pp. 8–96. http://dx.doi.org/10.1016/0001-8708(77)90017-2

[9] B. Kostant: Graded manifolds, graded Lie theory, and prequantization, Lecture Notes in Math., Vol. 570, Springer-Verlag, Berlin-New York, 1977, pp. 177–306.

[10] M. Spivak: A comprehensive introduction to differential geometry, Brandeis University, Waltham, Massachusetts, 1970.

[11] V.S. Varadarajan: Harmonic Analysis on Real Reductive Groups I and II, Lecture Notes in Math., Vol. 576, Springer Verlag, 1977. | Zbl 0354.43001

[12] N. Wallach: Real Reductive Groups I, Academic Press, INC, 1988.