Quantum graph spectra of a graphyne structure
Ngoc T. Do ; Peter Kuchment
Nanoscale Systems: Mathematical Modeling, Theory and Applications, Tome 2 (2013), p. 107-123 / Harvested from The Polish Digital Mathematics Library

We study the dispersion relations and spectra of invariant Schrödinger operators on a graphyne structure (lithographite). In particular, description of different parts of the spectrum, band-gap structure, and Dirac points are provided.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:267301
@article{bwmeta1.element.doi-10_2478_nsmmt-2013-0007,
     author = {Ngoc T. Do and Peter Kuchment},
     title = {Quantum graph spectra of a graphyne structure},
     journal = {Nanoscale Systems: Mathematical Modeling, Theory and Applications},
     volume = {2},
     year = {2013},
     pages = {107-123},
     zbl = {1273.81067},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_nsmmt-2013-0007}
}
Ngoc T. Do; Peter Kuchment. Quantum graph spectra of a graphyne structure. Nanoscale Systems: Mathematical Modeling, Theory and Applications, Tome 2 (2013) pp. 107-123. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_nsmmt-2013-0007/

C. Amovilli, F. Leys, N. March, Electronic Energy Spectrum of Two-Dimensional Solids and a Chain of C Atoms from a Quantum Network Model. J. Math. Chem. 36(2), 93–112 (2004) [Crossref] | Zbl 1052.81689

D. Bardhan, Novel New Material Graphyne Can Be A Serious Competitor To Graphene. http://techiebuzz. com/science/graphyne.html (2012)

G. Berkolaiko, P. Kuchment, Introduction to quantum graphs AMS, Providence, RI (2012) | Zbl 1317.81127

G. Borg, Eine Umkehrung der Sturm-Liouvillischen Eigenwertaufgabe, Acta Math. 78, 1–96(1946) | Zbl 0063.00523

M. J. Bucknum, E. A. Castro, The squarographites: A lesson in the chemical topology of tessellations in 2- and 3-dimensions. Solid State Sciences 10, 1245–1251 (2008) [WoS]

M.S.P. Eastham, The Spectral Theory of Periodic Differential Equations Edinburgh-London: Scottish Acad. Press Ltd. (1973) | Zbl 0287.34016

A. Enyanshin, A. Ivanovskii, Graphene Alloptropes: Stability, Structural and Electronic Properties from DF-TB Calculations. Phys. Status Solidi (b) 248, 1879–1883 (2011)

C.L. Fefferman, M.I. Weinstein, Honeycomb latice potentials and Dirac points J. Amer. Math. Soc. 25, 1169–1220 (2012) [Crossref] | Zbl 1316.35214

C.L. Fefferman, M.I. Weinstein, Waves in Honeycomb Structures http://arxiv.org/pdf/1212.6684.pdf

A. Geim, Nobel lecture: Random walk to graphene Rev. Mod. Phys. 83, 851–862 (2011) [WoS]

E. Korotyaev, I. Lobanov, Schrödinger operators on zigzag graphs. Ann. Henri Poincaré 8(6), 1151–1176 (2007) | Zbl 05207472

E. Korotyaev, I. Lobanov, Zigzag periodic nanotube in magnetic field. http://arxiv.org/list/math.SP/0604007 (2006)

P. Kuchment, Quantum graphs I. Some basic structures. Waves in Random media 14, S107–S128 (2004) | Zbl 1063.81058

P. Kuchment, Quantum graphs II. Some spectral properties of quantum and combinatorial graphs J. Phys. A 38(22), 4887–4900 (2005) | Zbl 1070.81062

P. Kuchment, Floquet Theory for Partial Differential Equations Birkhauser Verlag, Basel (1993) | Zbl 0789.35002

P. Kuchment, L. Kunyansky, Spectral properties of high-contrast band-gap materials and operators on graphs., Experimental Mathematics 8, 1–28 (1999) [Crossref] | Zbl 0930.35112

P. Kuchment, O. Post, On the Spectra of Carbon Nano-Structures. Commun. Math. Phys. 275, 805–826 (2007) [WoS] | Zbl 1145.81032

D. Malko, C. Neiss, F. Viñes,A. Görling, Competition for Graphene: Graphynes with Direction-Dependent Dirac Cones. Phys. Rev. Lett. 108, 086804 (2012) [WoS][PubMed][Crossref]

K. Novoselov, Nobel lecture: Graphene: Materials in the flatland Rev. Mod.Phys. 83, 837–849 (2011) [WoS]

K. Pankrashkin, Spectra of Schrödinger operators on equilateral quantum graphs, Lett. Math. Phys. 77(2), 139–154 (2006) [Crossref] | Zbl 1113.81056

M. Reed, B. Simon, Methods of Modern Mathematical Physics: Functional analysis Academic Press, Vol. 4 (1972) | Zbl 0242.46001

B. Simon. On the genericity of nonvanishing instability intervals in Hills equation Ann. Inst. Henri Poincaré XXIV(1), 91–93 (1976) | Zbl 0346.34015

K. Ruedenberg, C.W. Scherr, Free-electron network model for conjugated systems I. Theory. J. Chem. Phys. 21(9), 1565–1581 (1953) [Crossref]

L. E. Thomas. Time dependent approach to scattering from impurities in a crystal. Comm. Math. Phys. 33, 335–343 (1973)