Electronic properties of disclinated nanostructured cylinders
R. Pincak ; J. Smotlacha ; M. Pudlak
Nanoscale Systems: Mathematical Modeling, Theory and Applications, Tome 2 (2013), p. 81-95 / Harvested from The Polish Digital Mathematics Library

The electronic structure of the nanocylinder is investigated. Two cases of this kind of the nanostructure are explored: the defect-free nanocylinder and the nanocylinder whose geometry is perturbed by 2 heptagonal defects lying on the opposite sides. The characteristic quantity which is of our interest is the local density of states. To calculate it, the continuum gauge field-theory model will be used. In this model, the Dirac-like equation is solved on a curved surface. This procedure was used in the earlier papers which were concerned with the changes of the local density of states near the defects. Here, the local density of states is investigated along the whole structure of the nanocylinder.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:267305
@article{bwmeta1.element.doi-10_2478_nsmmt-2013-0005,
     author = {R. Pincak and J. Smotlacha and M. Pudlak},
     title = {Electronic properties of disclinated nanostructured cylinders},
     journal = {Nanoscale Systems: Mathematical Modeling, Theory and Applications},
     volume = {2},
     year = {2013},
     pages = {81-95},
     zbl = {1273.81084},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_nsmmt-2013-0005}
}
R. Pincak; J. Smotlacha; M. Pudlak. Electronic properties of disclinated nanostructured cylinders. Nanoscale Systems: Mathematical Modeling, Theory and Applications, Tome 2 (2013) pp. 81-95. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_nsmmt-2013-0005/

M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, Dover Publications, New York (1964). | Zbl 0171.38503

H. Ajiki and T. Ando, Electronic States of Carbon Nanotubes, J. Phys. Soc. Jpn. 62, 1255 (1993).

T. Ando, Physics of carbon nanotubes, Advances in Solid State Physics 43, 1 (2003).

T. W. Chamberlain, J. C. Meyer, J. Biskupek, J. Leschner, A. Santana, N. A. Besley et al., Reactions of the inner surface of carbon nanotubes and nanoprotrusion processes imaged at the atomic scale, Nature Chemistry 3, 732 (2011). [WoS]

W.-H. Chiang and R. M. Sankaran, Microplasma synthesis of metal nanoparticles for gas-phase studies of catalyzed carbon nanotube growth, Appl. Phys. Lett. 91, 121503 (2007). [WoS]

D. P. DiVincenzo and E. J. Mele, Self-Consistent Effective Mass Theory for Intralayer Screening in Graphite Intercalation Compounds, Phys. Rev. B 29, 1685 (1984).

O. Hod, J. E. Peralta and G. E. Scuseria, Phys. Rev. B 76, 233401 (2007).

C. L. Kane and E. J. Mele, Size Shape and Electronic Structure of Carbon Nanotubes, Phys. Rev. Lett. 78, 1932 (1997).

E. A. Kochetov and V. A. Osipov, Dirac fermions on a disclinated flexible surface, JETP Letters 91, 110 (2010). [WoS]

E. A. Kochetov, V. A. Osipov and R. Pincak, Electronic properties of disclinated flexible membrane beyond the inextensional limit: application to graphene, J. Phys.: Condens. Matter 22, 395502 (2010). [WoS]

D. V. Kolesnikov and V. A. Osipov, The continuum gauge field-theory model for low-energy electronic states of icosahedral fullerenes, Eur. Phys. Journ. B 49, 465 (2006).

D. V. Kolesnikov and V. A. Osipov, Geometry-induced smoothing of van Hove singularities in capped carbon nanotubes, EPL 78, 47002 (2007). [WoS]

D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Priceet et al., Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons, Nature 458, 872 (2009). [WoS]

H. W. Kroto, J. R. Heath, S. C. O’Brien et al., C60: Buckminsterfullerene, Nature 318, 162 (1985).

P. E. Lammert and V. H. Crespi, Graphene cones: classification by fictitious flux and electronic properties, Phys. Rev. B 69, 035406 (2004).

T. Muramaki, Y. Hasebe, K. Higashi, K. Kisoda, K. Nishio, T. Isshikiet et al., Simultaneous Observation of Single- Walled Carbon Nanotubes and Catalyst Particles on SiO2 Substrate by Transmission Electron Microscopy, Jpn. J. Appl. Phys. 47, 730 (2008).

I.A. Ovidko, Review on grain boundaries in graphene, curved poly- and nanocrystalline graphene structures as new carbon allotropes, Reviews on Advanced Materials Science 30, 201 (2012).

R. Pincak and M. Pudlak, chapter in Progress in Fullerene Research with title Electronic structure of spheroidal fullerenes, ed. F. Columbus, Nova Science Publishers, New York (2007).

M. Pudlak, R. Pincak and V. A. Osipov, Low energy electronic states in spheroidal fullerenes, Phys. Rev. B 74, 235435 (2006).

S. Reich, C. Thomsen and J. Maultzsch, Carbon Nanotubes: Basic Concepts and Physical Properties, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2004).

R. Saito, G. Dresselhaus and M. S. Dresselhaus, Tunneling conductance of connected carbon nanotubes, Phys Rev. B 53, 2044 (1996).

Y. Shimomura, Y. Takane and K. Wakabayashi, Electronic states and local density of states of graphene corner edge, JPS 2010 Spring Meeting The 65th JPS Annual Meeting (2010).

J. Smotlacha, R. Pincak and M. Pudlak, Electronic Structure of Disclinated Graphene in an Uniform Magnetic Field, Eur.Phys.J. B 84, 255 (2011). | Zbl 1273.81084

M. Upadhyay, L. Capolungo, V. Taupin and C. Fressengeas, Grain boundary and triple junction energies in crystalline media: a disclination based approach, Int. J. Solids and Structures 48, 3176 (2011). [WoS]

K. Wakabayashi, K. Sasaki, T. Nakanishi and T. Enoki, Electronic states of graphene nanoribbons and analytical solutions, Sci. Technol. Adv. Mater. 11, 054504 (2010). [WoS]

P. R. Wallace, The Band Theory of Graphite, Phys. Rev. 71, 622 (1947). | Zbl 0033.14304

K. Zhou, M. S. Wu, and A. A. Nazarov, Relaxation of a disclinated tricrystalline nanowire, Acta Materialia 56, 5828 (2008). [WoS]