Survival probabilities for HIV infected patients through semi-Markov processes
Giovanni Masala ; Giuseppina Cannas ; Marco Micocci
Biometrical Letters, Tome 51 (2014), p. 13-36 / Harvested from The Polish Digital Mathematics Library

In this paper we apply a parametric semi-Markov process to model the dynamic evolution of HIV-1 infected patients. The seriousness of the infection is rendered by the CD4+ T-lymphocyte counts. For this purpose we introduce the main features of nonhomogeneous semi-Markov models. After determining the transition probabilities and the waiting time distributions in each state of the disease, we solve the evolution equations of the process in order to estimate the interval transition probabilities. These quantities appear to be of fundamental importance for clinical predictions. We also estimate the survival probabilities for HIV infected patients and compare them with respect to certain categories, such as gender, age group or type of antiretroviral therapy. Finally we attach a reward structure to the aforementioned semi-Markov processes in order to estimate clinical costs. For this purpose we generate random trajectories from the semi-Markov processes through Monte Carlo simulation. The proposed model is then applied to a large database provided by ISS (Istituto Superiore di Sanità, Rome, Italy), and all the quantities of interest are computed.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:268735
@article{bwmeta1.element.doi-10_2478_bile-2014-0002,
     author = {Giovanni Masala and Giuseppina Cannas and Marco Micocci},
     title = {Survival probabilities for HIV infected patients through semi-Markov processes},
     journal = {Biometrical Letters},
     volume = {51},
     year = {2014},
     pages = {13-36},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_bile-2014-0002}
}
Giovanni Masala; Giuseppina Cannas; Marco Micocci. Survival probabilities for HIV infected patients through semi-Markov processes. Biometrical Letters, Tome 51 (2014) pp. 13-36. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_bile-2014-0002/

Barbu V.S., Limnios N. (2008):Semi-Markov Chains and Hidden Semi-Markov Models Toward Applications: Their Use in Reliability and DNA Analysis. Lecture Notes in Statistics N° 191, Springer, New York. DOI: 10.1007/978-0-387-73173-5.[Crossref] | Zbl 1208.60001

Brookmeyer R., Gail M.H. (1994): AIDS Epidemiology: a Quantitative Approach. Oxford University Press, New York.

Centres for Disease Control and Prevention (1993): Revised classification system for HIV infection and expanded surveillance case definition for AIDS among adolescents and adults. MMWR Recommendations and Reports, 41 N° RR-17: 1-19

Corradi G., Janssen J., Manca R. (2004):Numerical treatment of homogeneous semi- Markov processes in transient case-a straightforward approach. Methodology and Computing in Applied Probability 6: 233-246. | Zbl 1044.60086

D’Amico G., Di Biase G., Janssen J., Manca R. (2011):HIV Evolution: A Quantification of the Effects Due to Age and to Medical Progress. Informatica 22 (1): 27-42. | Zbl 1267.92049

Davidov O. (1999): The steady state probabilities for a regenerative semi-Markov processes with application to prevention and screening. Applied Stochastic Models and Data Analysis 15: 55-63. | Zbl 0927.62111

Davidov O., Zelen M. (2000): Designing cancer prevention trials: a stochastic approach., Statistics in Medicine 19: 1983-1995.[Crossref]

Di Biase G., D’Amico G., Di Girolamo A., Janssen J., Iacobelli S., Tinari N., Manca R. (2007a): Homogeneous semi-Markov model for predicting the HIV disease evolution: a case study. Far Edst. J. Math. Sci. (FJMS) 27: 89-109. | Zbl 1140.60340

Di Biase G., D’Amico G., Di Girolamo A., Janssen J., Iacobelli S., Tinari N., Manca R. (2007b):A Stochastic Model for the HIV/AIDS Dynamic Evolution. Mathematical problem in Engineering Art. ID 65636, 14 pages. DOI: 10.1155/2007/65636. | Zbl 05371812

Di Biase G., D’Amico G., Janssen J., Manca R. (2009): Patient’s Age Depending HIV/AIDS Evolution Analysis by means of a Non Homogeneous Semi-Markov Model. Advances and Applications in Statistics 11: 199-215. ISSN: 0972-3617. | Zbl 1180.92077

Fischl M.A., Reichmann D.D., Grieco M.H. et al. (1987): The efficacy of azidothymidine (AZT) in the treatment of patients with AIDS and AIDS related complex. A double blind placebo-controlled trial. New England Journal of Medicine 317: 185-191.

Foucher Y., Mathieu E., Saint-Pierre P., Durand J.F., Daurès J.P. (2005): A semi- Markov model based on generalized Weibull distribution with an illustration for HIV disease. Biometrical Journal 47: 825-833.[Crossref]

Foucher Y. (2007): Modèles semi-markoviens: Application à l'analyse de l'évolution de pathologies chroniques.Doctoral dissertation, Université de Montpellier 1

Goedert J.J. (1990): Prognostic markers for AIDS. Annals of Epidemiology 1: 129-139.[Crossref]

Goshu A.T., Dessie Z.G. (2013): Modelling Progression of HIV/AIDS Disease Stages Using Semi-Markov Processes. Journal of Data Science 11: 269-280.

Howard R.A. (1971a): Dynamic Probabilistic Systems, Markov Models. John Wiley & Sons Vol. 1, New York. | Zbl 0227.90031

Howard R.A. (1971b): Dynamic Probabilistic Systems, Semi-Markov and Decision Processes. John Wiley & Sons Vol. 2, New York. | Zbl 0227.90032

Iosifescu Manu A. (1972): Non homogeneous semi-Markov processes, Stud. Lere. Mat. 24: 529-533. | Zbl 0245.60067

Jaffe H.W., Lifson A.R. (1988): Acquisition and transmission of HIV, Infectious Diseases Clinic of North America 2: 299-306.

Janssen J., Manca R. (2006): Applied Semi-Markov Processes. Springer, New York. | Zbl 1096.60002

Joly P., Commenges D. (1999): A penalized likelihood approach for a progressive three-state model with censored and truncated data: application to AIDS. Biometrics 55: 887-890.[PubMed][Crossref] | Zbl 1059.62664

Lagakos S.W., Sommer C.J., Zelen M. (1978): Semi-Markov models for partially censored Data. Biometrika 65: 311-317.[Crossref] | Zbl 0398.62032

Levy P. (1954): Processus semi-markoviens. Proceedings of the International Congress of Mathematicians 3: 416-426, Erven P. Noordhoff N.V., Groningen, The Netherlands.

Levy J.A. (1993): Pathogenesis of human immunodeficiency virus infection. Microbiological Reviews 57: 183-289.[PubMed]

Longini I.M., Clark J., Gardner W.S., Brundage J. (1991):The dynamics of CD4+ T lymphocyte decline in HIV infected individuals: A Markov modelling approach. Journal of Acquired Immunodeficiency Syndromes 4: 1141-1147.

Marshall A.H., Shaw B., McClean S.I. (2007): Estimating the costs for a group of geriatric patients using the Coxian phase-type distribution. Statistics in Medicine 26: 2716-2729.[WoS][Crossref]

Satten G.A., Sternberg M.R. (1999): Fitting semi-Markov models to interval-censored data with unknown initiation times. Biometrics 55: 507-513.[PubMed][Crossref] | Zbl 1059.62706

Smith W.L. (1955): Regenerative stochastic processes. Proceedings of the Royal Society of London Series A. 232: 6-31. | Zbl 0067.36301

Sternberg M.R., Satten S.A. (1999): Discrete-time nonparametric estimation for semi- Markov models of chain-of-events data subject to interval-censoring and truncation. Biometrics 55: 514-522.[Crossref][PubMed] | Zbl 1059.62719

Sweeting M.J., De Angelis D., Aalen O.O. (2005): Bayesian back-calculation using a multi-State model with application to HIV. Statistics in Medicine 24: 3991-4007.[Crossref]

Tsiatis A.A., Dafni U., De Gruttola V. et al. (1992): The relationship of CD4 counts over time to survival of patients with AIDS: Is CD4 a good surrogated marker? Jewell N., Dietz K. and Farewell V (eds.), AIDS Epidemiology: Methodological Issues, Boston, Birkhauser: 257-274.

UNAIDS/WHO AIDS Epidemic Update December 2006 (2006): available at http://www.unaids.org/en/HIV_data/epi2006/default.asp.