Isoperimetric and Stable Sets for Log-Concave Perturbations of Gaussian Measures
César Rosales
Analysis and Geometry in Metric Spaces, Tome 2 (2014), / Harvested from The Polish Digital Mathematics Library

Let be an open half-space or slab in ℝn+1 endowed with a perturbation of the Gaussian measure of the form f (p) := exp(ω(p) − c|p|2), where c > 0 and ω is a smooth concave function depending only on the signed distance from the linear hyperplane parallel to ∂ Ω. In this work we follow a variational approach to show that half-spaces perpendicular to ∂ Ω uniquely minimize the weighted perimeter in Ω among sets enclosing the same weighted volume. The main ingredient of the proof is the characterization of half-spaces parallel or perpendicular to ∂ Ω as the unique stable sets with small singular set and null weighted capacity. Our methods also apply for = ℝn+1, which produces in particular the classification of stable sets in Gauss space and a new proof of the Gaussian isoperimetric inequality. Finally, we use optimal transport to study the weighted minimizers when the perturbation term ω is concave and possibly non-smooth.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:268885
@article{bwmeta1.element.doi-10_2478_agms-2014-0014,
     author = {C\'esar Rosales},
     title = {Isoperimetric and Stable Sets for Log-Concave Perturbations of Gaussian Measures},
     journal = {Analysis and Geometry in Metric Spaces},
     volume = {2},
     year = {2014},
     zbl = {1304.49096},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_agms-2014-0014}
}
César Rosales. Isoperimetric and Stable Sets for Log-Concave Perturbations of Gaussian Measures. Analysis and Geometry in Metric Spaces, Tome 2 (2014) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_agms-2014-0014/

[1] E. Adams, I. Corwin, D. Davis, M. Lee, and R. Visocchi, Isoperimetric regions in Gauss sectors, Rose-Hulman Und. Math. J. 8 (2007), no. 1.

[2] L. Ambrosio, Some fine properties of sets of finite perimeter in Ahlfors regular metric measure spaces, Adv.Math. 159 (2001), no. 1, 51–67. MR 1823840 (2002b:31002) | Zbl 1002.28004

[3] L. Ambrosio, N. Fusco, and D. Pallara, Functions of bounded variation and free discontinuity problems, OxfordMathematical Monographs, The Clarendon Press Oxford University Press, New York, 2000. MR 1857292 (2003a:49002) | Zbl 0957.49001

[4] D. Bakry and M. Émery, Diffusions hypercontractives, Séminaire de probabilités, XIX, 1983/84, Lecture Notes in Math., vol. 1123, Springer, Berlin, 1985, pp. 177–206. MR MR889476 (88j:60131)

[5] D. Bakry and M. Ledoux, Lévy-Gromov’s isoperimetric inequality for an infinite-dimensional diffusion generator, Invent. Math. 123 (1996), no. 2, 259–281. MR MR1374200 (97c:58162) | Zbl 0855.58011

[6] D. Bakry and Z. Qian, Some new results on eigenvectors via dimension, diameter, and Ricci curvature, Adv.Math. 155 (2000), no. 1, 98–153. MR 1789850 (2002g:58048) | Zbl 0980.58020

[7] A. Baldi, Weighted BV functions, Houston J. Math. 27 (2001), no. 3, 683–705. MR 1864805 (2002j:46045)

[8] J. L. Barbosa, M. P. do Carmo, and J. Eschenburg, Stability of hypersurfaces of constant mean curvature in Riemannian manifolds, Math. Z. 197 (1988), no. 1, 123–138. MR MR917854 (88m:53109) | Zbl 0653.53045

[9] M. Barchiesi, A. Brancolini, and V. Julin, Sharp dimension free quantitative estimates for the Gaussian isoperimetric inequality, arXiv:1409.2106, September 2014.

[10] F. Barthe, C. Bianchini, and A. Colesanti, Isoperimetry and stability of hyperplanes for product probability measures, Ann. Mat. Pura Appl. (4) 192 (2013), no. 2, 165–190. MR 3035134 | Zbl 1267.53014

[11] F. Barthe and B. Maurey, Some remarks on isoperimetry of Gaussian type, Ann. Inst. H. Poincaré Probab. Statist. 36 (2000), no. 4, 419–434. MR MR1785389 (2001k:60055) | Zbl 0964.60018

[12] V. Bayle, Propriétés de concavité du profil isopérimétrique et applications, Ph.D. thesis, Institut Fourier (Grenoble), 2003.

[13] , A differential inequality for the isoperimetric profile, Int. Math. Res. Not. (2004), no. 7, 311–342. MR 2041647 (2005a:53050) | Zbl 1080.53026

[14] V. Bayle and C. Rosales, Some isoperimetric comparison theorems for convex bodies in Riemannian manifolds, Indiana Univ. Math. J. 54 (2005), no. 5, 1371–1394. MR 2177105 (2006f:53040) | Zbl 1085.53025

[15] G. Bellettini, G. Bouchitté, and I. Fragalà, BV functions with respect to a measure and relaxation of metric integral functionals, J. Convex Anal. 6 (1999), no. 2, 349–366. MR 1736243 (2000k:49016) | Zbl 0959.49015

[16] S. G. Bobkov, An isoperimetric inequality on the discrete cube, and an elementary proof of the isoperimetric inequality in Gauss space, Ann. Probab. 25 (1997), no. 1, 206–214. MR MR1428506 (98g:60033) | Zbl 0883.60031

[17] , Perturbations in the Gaussian isoperimetric inequality, J. Math. Sci. (N. Y.) 166 (2010), no. 3, 225–238, Problems in mathematical analysis. No. 45. MR 2839030 (2012m:60050)

[18] S. G. Bobkov and K. Udre, Characterization of Gaussian measures in terms of the isoperimetric property of half-spaces, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 228 (1996), no. Veroyatn. i Stat. 1, 31–38, 356. MR 1449845 (98e:60056)

[19] C. Borell, The Brunn-Minkowski inequality in Gauss space, Invent. Math. 30 (1975), no. 2, 207–216. MR MR0399402 (53 #3246) | Zbl 0292.60004

[20] F. Brock, F. Chiacchio, and A. Mercaldo, A class of degenerate elliptic equations and a Dido’s problem with respect to a measure, J. Math. Anal. Appl. 348 (2008), no. 1, 356–365. MR 2449353 (2010h:35146) | Zbl 1156.35048

[21] X. Cabré, X. Ros-Oton, and J. Serra, Sharp isoperimetric inequalities via the ABP method, arXiv:1304.1724v3, April 2013. | Zbl 1293.46018

[22] L. A. Caffarelli, Monotonicity properties of optimal transportation and the FKG and related inequalities, Comm. Math. Phys. 214 (2000), no. 3, 547–563. MR 1800860 (2002c:60029) | Zbl 0978.60107

[23] A. Cañete, M. Miranda, and D. Vittone, Some isoperimetric problems in planes with density, J. Geom. Anal. 20 (2010), no. 2, 243–290. MR 2579510 (2011a:49102) | Zbl 1193.49050

[24] A. Cañete and C. Rosales, Compact stable hypersurfaces with free boundary in convex solid cones with homogeneous densities, Calc. Var. Partial Differential Equations 51 (2014), no. 3-4, 887–913. MR 3268875 | Zbl 1317.53006

[25] E. A. Carlen and C. Kerce, On the cases of equality in Bobkov’s inequality and Gaussian rearrangement, Calc. Var. Partial Differential Equations 13 (2001), no. 1, 1–18. MR MR1854254 (2002f:26016) | Zbl 1009.49029

[26] K. Castro and C. Rosales, Free boundary stable hypersurfaces in manifolds with density and rigidity results, J. Geom. Phys. 79 (2014), 14–28. | Zbl 1284.53052

[27] G. R. Chambers, Proof of the log-convex density conjecture, arXiv:1311.4012v2, December 2013.

[28] A. Cianchi, N. Fusco, F. Maggi, and A. Pratelli, On the isoperimetric deficit in Gauss space, Amer. J. Math. 133 (2011), no. 1, 131–186. MR 2752937 (2012b:28007) | Zbl 1219.28005

[29] E. Cinti and A. Pratelli, The " −"fi property, the boundedness of isoperimetric sets in RN with density, and some applications, arXiv:1209.3624, September 2012.

[30] T. H. Doan, Some calibrated surfaces in manifolds with density, J. Geom. Phys. 61 (2011), no. 8, 1625–1629. MR 2802497 (2012e:53091) | Zbl 1225.53019

[31] A. Ehrhard, Symétrisation dans l’espace de Gauss, Math. Scand. 53 (1983), no. 2, 281–301. MR MR745081 (85f:60058) | Zbl 0542.60003

[32] L. C. Evans and R. F. Gariepy, Measure theory and fine properties of functions, Studies in AdvancedMathematics, CRC Press, Boca Raton, FL, 1992. MR 1158660 (93f:28001)

[33] A. Figalli and F. Maggi, On the isoperimetric problem for radial log-convex densities, Calc. Var. Partial Differential Equations 48 (2013), no. 3-4, 447–489. MR 3116018 | Zbl 1307.49046

[34] N. Fusco, F.Maggi, and A. Pratelli, On the isoperimetric problemwith respect to a mixed Euclidean-Gaussian density, J. Funct. Anal. 260 (2011), no. 12, 3678–3717. MR 2781973 (2012c:49095) | Zbl 1222.49058

[35] E. Giusti, Minimal surfaces and functions of bounded variation, Monographs in Mathematics, vol. 80, Birkhäuser Verlag, Basel, 1984. MR 775682 (87a:58041) | Zbl 0545.49018

[36] E. Gonzalez, U. Massari, and I. Tamanini, On the regularity of boundaries of sets minimizing perimeter with a volume constraint, Indiana Univ. Math. J. 32 (1983), no. 1, 25–37. MR 684753 (84d:49043) | Zbl 0486.49024

[37] A. Grigor’yan, Isoperimetric inequalities and capacities on Riemannian manifolds, The Maz’ya anniversary collection, Vol. 1 (Rostock, 1998), Oper. Theory Adv. Appl., vol. 109, Birkhäuser, Basel, 1999, pp. 139–153. MR 1747869 (2002a:31009)

[38] A. Grigor’yan and J. Masamune, Parabolicity and stochastic completeness of manifolds in terms of the Green formula, J. Math. Pures Appl. (9) 100 (2013), no. 5, 607–632. MR 3115827 | Zbl 06448858

[39] M. Gromov, Isoperimetry of waists and concentration of maps, Geom. Funct. Anal. 13 (2003), no. 1, 178–215. MR MR1978494 (2004m:53073) | Zbl 1044.46057

[40] M. Grüter, Boundary regularity for solutions of a partitioning problem, Arch. Rational Mech. Anal. 97 (1987), no. 3, 261–270. MR 862549 (87k:49050) | Zbl 0613.49029

[41] M. Grüter and J. Jost, Allard type regularity results for varifolds with free boundaries, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 13 (1986), no. 1, 129–169. MR 863638 (89d:49048) | Zbl 0615.49018

[42] S. Howe, The log-convex density conjecture and vertical surface area in warped products, arXiv:1107.4402, July 2011. | Zbl 1326.49077

[43] Y.-H. Kim and E. Milman, A generalization of Caffarelli’s contraction theorem via (reverse) heat flow, Math. Ann. 354 (2012), no. 3, 827–862. MR 2983070 | Zbl 1257.35101

[44] A. V. Kolesnikov and E. Milman, Poincaré and Brunn-Minkowski inequalities on weighted Riemannian manifolds with boundary, arXiv:1310.2526v4, September 2014.

[45] M. Ledoux, Isoperimetry and Gaussian analysis, Lectures on probability theory and statistics (Saint-Flour, 1994), Lecture Notes in Math., vol. 1648, Springer, Berlin, 1996, pp. 165–294. MR 1600888 (99h:60002)

[46] , A short proof of the Gaussian isoperimetric inequality, High dimensional probability (Oberwolfach, 1996), Progr. Probab., vol. 43, Birkhäuser, Basel, 1998, pp. 229–232. MR 1652328 (99j:60027)

[47] , The geometry ofMarkov diffusion generators, Ann. Fac. Sci. ToulouseMath. (6) 9 (2000), no. 2, 305–366, Probability theory. MR 1813804 (2002a:58045)

[48] M. Lee, Isoperimetric regions in surfaces and in surfaces with density, Rose-Hulman Und. Math. J. 7 (2006), no. 2.

[49] G. P. Leonardi and S. Rigot, Isoperimetric sets on Carnot groups, Houston J. Math. 29 (2003), no. 3, 609–637 (electronic). MR MR2000099 (2004d:28008) | Zbl 1039.49037

[50] A. Lichnerowicz, Variétés riemanniennes à tenseur C non négatif, C. R. Acad. Sci. Paris Sér. A-B 271 (1970), A650–A653. MR 0268812 (42 #3709) | Zbl 0208.50003

[51] , Variétés kählériennes à première classe de Chern non negative et variétés riemanniennes à courbure de Ricci généralisée non negative, J. Differential Geom. 6 (1971/72), 47–94. MR 0300228 (45 #9274) | Zbl 0231.53063

[52] F. Maggi, Sets of finite perimeter and geometric variational problems, Cambridge Studies in Advanced Mathematics, vol. 135, Cambridge University Press, Cambridge, 2012, An introduction to geometric measure theory. MR 2976521 | Zbl 1255.49074

[53] M. McGonagle and J. Ross, The hyperplane is the only stable, smooth solution to the isoperimetric problem in Gaussian space, arXiv:1307.7088, July 2013. | Zbl 1325.53079

[54] E. Milman, Sharp isoperimetric inequalities and model spaces for curvature-dimension-diameter condition, to appear in J. Eur. Math. Soc., arXiv:1108.4609v3.

[55] , A proof of Bobkov’s spectral bound for convex domains via Gaussian fitting and free energy estimation, Analysis and geometry of metric measure spaces, CRM Proc. Lecture Notes, vol. 56, Amer. Math. Soc., Providence, RI, 2013, pp. 181–196. MR 3060503 | Zbl 1275.60024

[56] E. Milman and L. Rotem, Complemented Brunn-Minkowski inequalities and isoperimetry for homogeneous and nonhomogeneous measures, Adv. Math. 262 (2014), 867–908. MR 3228444 | Zbl 1311.52008

[57] M. Miranda, Functions of bounded variation on “good” metric spaces, J. Math. Pures Appl. (9) 82 (2003), no. 8, 975–1004. MR 2005202 (2004k:46038) | Zbl 1109.46030

[58] F. Morgan, Regularity of isoperimetric hypersurfaces in Riemannian manifolds, Trans. Amer. Math. Soc. 355 (2003), no. 12, 5041–5052. MR 1997594 (2004j:49066) | Zbl 1063.49031

[59] , Manifolds with density, Notices Amer. Math. Soc. 52 (2005), no. 8, 853–858. MR MR2161354 (2006g:53044) | Zbl 1118.53022

[60] , Geometric measure theory. A beginner’s guide, fourth ed., Elsevier/Academic Press, Amsterdam, 2009. MR 2455580 (2009i:49001)

[61] , The log-convex density conjecture, Concentration, functional inequalities and isoperimetry, Contemp. Math., vol. 545, Amer. Math. Soc., Providence, RI, 2011, pp. 209–211. MR 2858534

[62] F. Morgan and D. L. Johnson, Some sharp isoperimetric theorems for Riemannianmanifolds, Indiana Univ.Math. J. 49 (2000), no. 3, 1017–1041. MR 1803220 (2002e:53043) | Zbl 1021.53020

[63] F. Morgan and A. Pratelli, Existence of isoperimetric regions in Rn with density, Ann. Global Anal. Geom. 43 (2013), no. 4, 331–365. MR 3038539 | Zbl 1263.49049

[64] F. Morgan and M. Ritoré, Isoperimetric regions in cones, Trans. Amer.Math. Soc. 354 (2002), no. 6, 2327–2339. MR 1885654 (2003a:53089) | Zbl 0988.53028

[65] M. Ritoré and C. Rosales, Existence and characterization of regions minimizing perimeter under a volume constraint inside Euclidean cones, Trans. Amer. Math. Soc. 356 (2004), no. 11, 4601–4622. MR 2067135 (2005g:49076) | Zbl 1057.53023

[66] A. Ros, The isoperimetric problem, Global theory of minimal surfaces, ClayMath. Proc., vol. 2, Amer.Math. Soc., Providence, RI, 2005, pp. 175–209. MR MR2167260 (2006e:53023) | Zbl 1125.49034

[67] C. Rosales, A. Cañete, V. Bayle, and F. Morgan, On the isoperimetric problem in Euclidean space with density, Calc. Var. Partial Differential Equations 31 (2008), no. 1, 27–46. MR 2342613 (2008m:49212) | Zbl 1126.49038

[68] L. Simon, Lectures on geometric measure theory, Proceedings of the Centre for Mathematical Analysis, Australian National University, vol. 3, Australian National University Centre for Mathematical Analysis, Canberra, 1983. MR 756417 (87a:49001) | Zbl 0546.49019

[69] P. Sternberg and K. Zumbrun, A Poincaré inequality with applications to volume-constrained area-minimizing surfaces, J. Reine Angew. Math. 503 (1998), 63–85. MR 1650327 (99g:58028) | Zbl 0967.53006

[70] , On the connectivity of boundaries of sets minimizing perimeter subject to a volume constraint, Comm. Anal. Geom. 7 (1999), no. 1, 199–220. MR 1674097 (2000d:49062) | Zbl 0930.49024

[71] V. N. Sudakov and B. S. Tirel’son, Extremal properties of half-spaces for spherically invariant measures, Zap. Naucn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 41 (1974), 14–24, 165, Problems in the theory of probability distributions, II. MR MR0365680 (51 #1932)

[72] J. Szarski, Differential inequalities, Monografie Matematyczne, Tom 43, Panstwowe Wydawnictwo Naukowe, Warsaw, 1965. MR 0190409 (32 #7822)

[73] M. Troyanov, Parabolicity of manifolds, Siberian Adv. Math. 9 (1999), no. 4, 125–150. MR 1749853 (2001e:31013)