Riemannian Polyhedra and Liouville-Type Theorems for Harmonic Maps
Zahra Sinaei
Analysis and Geometry in Metric Spaces, Tome 2 (2014), / Harvested from The Polish Digital Mathematics Library

This paper is a study of harmonic maps fromRiemannian polyhedra to locally non-positively curved geodesic spaces in the sense of Alexandrov. We prove Liouville-type theorems for subharmonic functions and harmonic maps under two different assumptions on the source space. First we prove the analogue of the Schoen-Yau Theorem on a complete pseudomanifolds with non-negative Ricci curvature. Then we study 2-parabolic admissible Riemannian polyhedra and prove some vanishing results on them.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:268804
@article{bwmeta1.element.doi-10_2478_agms-2014-0012,
     author = {Zahra Sinaei},
     title = {Riemannian Polyhedra and Liouville-Type Theorems for Harmonic Maps},
     journal = {Analysis and Geometry in Metric Spaces},
     volume = {2},
     year = {2014},
     zbl = {1309.53056},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_agms-2014-0012}
}
Zahra Sinaei. Riemannian Polyhedra and Liouville-Type Theorems for Harmonic Maps. Analysis and Geometry in Metric Spaces, Tome 2 (2014) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_agms-2014-0012/

[1] Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. Metric measure spaces with Riemannian Ricci curvature bounded from below. Duke Math. J., 163(7):1405–1490, 2014. | Zbl 1304.35310

[2] L. Ambrosio, N. Gigli, and G. Savaré. Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below. ArXiv e-prints, June 2011. | Zbl 1312.53056

[3] L. Ambrosio, A. Mondino, and G. Savaré. On the Bakry-n’Emery condition, the gradient estimates and the Local-to- Global property of RCD*(K, N) metric measure spaces. ArXiv e-prints, September 2013. | Zbl 1335.35088

[4] Luigi Ambrosio and Paolo Tilli. Topics on analysis in metric spaces, volume 25 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford, 2004. | Zbl 1080.28001

[5] Kathrin Bacher and Karl-Theodor Sturm. Localization and tensorization properties of the curvature-dimension condition for metric measure spaces. J. Funct. Anal., 259(1):28–56, 2010. | Zbl 1196.53027

[6] Anders Björn and Jana Björn. Nonlinear potential theory on metric spaces, volume 17 of EMS Tracts in Mathematics. European Mathematical Society (EMS), Zürich, 2011. | Zbl 1231.31001

[7] Dmitri Burago, Yuri Burago, and Sergei Ivanov. A course in metric geometry, volume 33 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2001. | Zbl 1232.53037

[8] Jeff Cheeger. On the Hodge theory of Riemannian pseudomanifolds. In Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979), Proc. Sympos. Pure Math., XXXVI, pages 91–146. Amer. Math. Soc., Providence, R.I., 1980. | Zbl 0461.58002

[9] Jingyi Chen. On energy minimizing mappings between and into singular spaces. Duke Math. J., 79(1):77–99, 1995. | Zbl 0855.58015

[10] J. Cheeger. Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal., 9(3):428–517, 1999. | Zbl 0942.58018

[11] Georgios Daskalopoulos and Chikako Mese. Harmonic maps from a simplicial complex and geometric rigidity. J. Differential Geom., 78(2):269–293, 2008. | Zbl 1142.58014

[12] Georgios Daskalopoulos and Chikako Mese. Harmonic maps between singular spaces I. Comm. Anal. Geom., 18(2):257–337, 2010. | Zbl 1229.53068

[13] J. Eells and B. Fuglede. Harmonic maps between Riemannian polyhedra, volume 142 of Cambridge Tracts inMathematics. Cambridge University Press, Cambridge, 2001.

[14] M. Erbar, K. Kuwada, and K.-T. Sturm. On the Equivalence of the Entropic Curvature-Dimension Condition and Bochner’s Inequality on Metric Measure Spaces. ArXiv e-prints, March 2013. | Zbl 1329.53059

[15] N. Gigli. On the differential structure of metric measure spaces and applications. ArXiv e-prints, May 2012.

[16] Nicola Gigli, Kazumasa Kuwada, and Shin-Ichi Ohta. Heat flow on Alexandrov spaces. Comm. Pure Appl. Math., 66(3):307–331, 2013. | Zbl 1267.58014

[17] Mikhail Gromov and Richard Schoen. Harmonicmaps into singular spaces and p-adic superrigidity for lattices in groups of rank one. Inst. Hautes Études Sci. Publ. Math., (76):165–246, 1992. | Zbl 0896.58024

[18] Vladimir Gol0dshtein and Marc Troyanov. Axiomatic theory of Sobolev spaces. Expo. Math., 19(4):289–336, 2001. | Zbl 1006.46023

[19] Vladimir Gol0dshtein and Marc Troyanov. Capacities in metric spaces. Integral Equations Operator Theory, 44(2):212– 242, 2002. | Zbl 1030.46038

[20] R. E. Greene and H. Wu. Smooth approximations of convex, subharmonic, and plurisubharmonic functions. Ann. Sci. École Norm. Sup. (4), 12(1):47–84, 1979. | Zbl 0415.31001

[21] Piotr Hajłasz. Sobolev spaces on an arbitrary metric space. Potential Anal., 5(4):403–415, 1996. | Zbl 0859.46022

[22] Piotr Hajłasz and Pekka Koskela. Sobolev met Poincaré. Mem. Amer. Math. Soc., 145(688):x+101, 2000. | Zbl 0954.46022

[23] Juha Heinonen and Pekka Koskela. Quasiconformal maps in metric spaces with controlled geometry. Acta Math., 181(1):1–61, 1998. | Zbl 0915.30018

[24] Stefan Hildebrandt. Liouville theorems for harmonicmappings, and an approach to Bernstein theorems. In Seminar on Differential Geometry, volume 102 of Ann. of Math. Stud., pages 107–131. Princeton Univ. Press, Princeton, N.J., 1982. | Zbl 0505.58014

[25] Stefan Hildebrandt. Harmonic mappings of Riemannian manifolds. In Harmonic mappings and minimal immersions (Montecatini, 1984), volume 1161 of Lecture Notes in Math., pages 1–117. Springer, Berlin, 1985.

[26] S. Hildebrandt, J. Jost, and K.-O. Widman. Harmonic mappings and minimal submanifolds. Invent. Math., 62(2):269– 298, 1980/81. | Zbl 0446.58006

[27] Ilkka Holopainen. Nonlinear potential theory and quasiregular mappings on Riemannian manifolds. Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes, (74):45, 1990.

[28] B. Hua, M. Kell, and C. Xia. Harmonic functions on metric measure spaces. ArXiv e-prints, August 2013.

[29] Renjin Jiang. Lipschitz continuity of solutions of Poisson equations in metric measure spaces. Potential Anal., 37(3):281–301, 2012. | Zbl 1252.31007

[30] Renjin Jiang. Cheeger-harmonic functions in metric measure spaces revisited. J. Funct. Anal., 266(3):1373–1394, 2014. | Zbl 1295.30130

[31] Jürgen Jost. Equilibrium maps between metric spaces. Calc. Var. Partial Differential Equations 2(2):173–204, 1994. | Zbl 0798.58021

[32] Jürgen Jost. Nonlinear Dirichlet forms. New directions in Dirichlet forms, 1-47, AMS/IP Stud. Adv.Math., 8, Amer.Math. Soc., Providence, RI, 1998. | Zbl 0914.31006

[33] M. Kell. A Note on Lipschitz Continuity of Solutions of Poisson Equations in Metric Measure Spaces. ArXiv e-prints, July 2013.

[34] Nicholas J. Korevaar and Richard M. Schoen. Sobolev spaces and harmonic maps for metric space targets. Comm. Anal. Geom., 1(3-4):561–659, 1993. | Zbl 0862.58004

[35] Nicholas J. Korevaar and Richard M. Schoen. Global existence theorems for harmonic maps to non-locally compact spaces. Comm. Anal. Geom. 5 (1997), 5(2):333–387, 1997. | Zbl 0908.58007

[36] Pekka Koskela, Kai Rajala, and Nageswari Shanmugalingam. Lipschitz continuity of Cheeger-harmonic functions in metric measure spaces. J. Funct. Anal., 202(1):147–173, 2003. | Zbl 1027.31006

[37] Kazuhiro Kuwae and Takashi Shioya. On generalized measure contraction property and energy functionals over Lipschitz maps. Potential Anal., 15(1-2):105–121, 2001. ICPA98 (Hammamet). | Zbl 0996.31006

[38] Kazuhiro Kuwae and Takashi Shioya. Sobolev and Dirichlet spaces over maps between metric spaces. J. Reine Angew. Math., 555:39–75, 2003. | Zbl 1053.46020

[39] Kazuhiro Kuwae and Karl-Theodor Sturm. On a Liouville type theorem for harmonic maps to convex spaces via Markov chains. In Proceedings of RIMS Workshop on Stochastic Analysis and Applications, RIMS Kôkyûroku Bessatsu, B6, pages 177–191. Res. Inst. Math. Sci. (RIMS), Kyoto, 2008. | Zbl 1131.31002

[40] John Lott and Cédric Villani. Weak curvature conditions and functional inequalities. J. Funct. Anal., 245(1):311–333, 2007. | Zbl 1119.53028

[41] John Lott and Cédric Villani. Ricci curvature for metric-measure spaces via optimal transport. Ann. of Math. (2), 169(3):903–991, 2009. | Zbl 1178.53038

[42] Shin-ichi Ohta. On themeasure contraction property of metricmeasure spaces. Comment.Math. Helv., 82(4):805–828, 2007.

[43] Athanase Papadopoulos. Metric spaces, convexity and nonpositive curvature, volume 6 of IRMA Lectures inMathematics and Theoretical Physics. European Mathematical Society (EMS), Zürich, 2005.

[44] Nageswari Shanmugalingam. Newtonian spaces: an extension of Sobolev spaces to metric measure spaces. Rev.Mat. Iberoamericana, 16(2):243–279, 2000. | Zbl 0974.46038

[45] Richard Schoen and Shing Tung Yau. Harmonic maps and the topology of stable hypersurfaces and manifolds with non-negative Ricci curvature. Comment. Math. Helv., 51(3):333–341, 1976. | Zbl 0361.53040

[46] Karl-Theodor Sturm. On the geometry of metric measure spaces. II. Acta Math., 196(1):133–177, 2006. | Zbl 1106.53032

[47] M. Troyanov. Parabolicity of manifolds. Siberian Adv. Math., 9(4):125–150, 1999. | Zbl 0991.31008

[48] Yuanlong Xin. Geometry of harmonic maps. Progress in Nonlinear Differential Equations and their Applications, 23. Birkhäuser Boston Inc., Boston, MA, 1996.

[49] Shing Tung Yau. Some function-theoretic properties of complete Riemannianmanifold and their applications to geometry. Indiana Univ. Math. J., 25(7):659–670, 1976. | Zbl 0335.53041

[50] Hui-Chun Zhang and Xi-Ping Zhu. Yau’s gradient estimates on Alexandrov spaces. J. Differential Geom., 91(3):445–522, 2012. | Zbl 1258.53075