An Overview of the Proof of the Splitting Theorem in Spaces with Non-Negative Ricci Curvature
Nicola Gigli
Analysis and Geometry in Metric Spaces, Tome 2 (2014), / Harvested from The Polish Digital Mathematics Library
Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:266707
@article{bwmeta1.element.doi-10_2478_agms-2014-0006,
     author = {Nicola Gigli},
     title = {An Overview of the Proof of the Splitting Theorem in Spaces with Non-Negative Ricci Curvature},
     journal = {Analysis and Geometry in Metric Spaces},
     volume = {2},
     year = {2014},
     zbl = {1310.53031},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_agms-2014-0006}
}
Nicola Gigli. An Overview of the Proof of the Splitting Theorem in Spaces with Non-Negative Ricci Curvature. Analysis and Geometry in Metric Spaces, Tome 2 (2014) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_agms-2014-0006/

[1] U. Abresch and D. Gromoll, On complete manifolds with nonnegative Ricci curvature, J. Amer. Math. Soc., 3 (1990), pp. 355-374.[Crossref] | Zbl 0704.53032

[2] L. Ambrosio and N. Gigli, A user’s guide to optimal transport. Modelling and Optimisation of Flows on Networks, Lecture Notes in Mathematics, Vol. 2062, Springer, 2011.

[3] L. Ambrosio, N. Gigli, A. Mondino, and T. Rajala, Riemannian ricci curvature lower bounds in metric measure spaces with ff-ffnite measure. Preprint, arXiv:1207.4924, 2011. | Zbl 1317.53060

[4] L. Ambrosio, N. Gigli, and G. Savaré, Gradient flows in metric spaces and in the space of probability measures, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, second ed., 2008. | Zbl 1145.35001

[5] , Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces. Accepted by Revista Matemática Iberoamericana, arXiv:1111.3730, 2011.

[6] , Metric measure spaces with riemannian Ricci curvature bounded from below. Preprint, arXiv:1109.0222, 2011.

[7] , Bakry-Émery curvature-dimension condition and Riemannian Ricci curvature bounds. Preprint, arXiv:1209.5786, 2012.

[8] L. Ambrosio, N. Gigli, and G. Savaré, Calculus and heat flow in metric measure spaces and applications to spaces with ricci bounds from below, Inventiones mathematicae, (2013), pp. 1-103.

[9] L. Ambrosio, A. Mondino, and G. Savaré, Nonlinear diffusion equations and curvature conditions in metric measure spaces. Preprint, 2013. | Zbl 1335.35088

[10] K. Bacher and K.-T. Sturm, Localization and tensorization properties of the curvature-dimension condition for metric measure spaces, J. Funct. Anal., 259 (2010), pp. 28-56. | Zbl 1196.53027

[11] A. Björn and J. Björn, Nonlinear potential theory on metric spaces, vol. 17 of EMS Tracts in Mathematics, European Mathematical Society (EMS), Zürich, 2011. | Zbl 1231.31001

[12] F. Cavalletti and K.-T. Sturm, Local curvature-dimension condition implies measure-contraction property, J. Funct. Anal., 262 (2012), pp. 5110-5127. | Zbl 1244.53050

[13] J. Cheeger, Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal., 9 (1999), pp. 428-517.[Crossref] | Zbl 0942.58018

[14] J. Cheeger and T. H. Colding, Lower bounds on Ricci curvature and the almost rigidity of warped products, Ann. of Math. (2), 144 (1996), pp. 189-237. | Zbl 0865.53037

[15] , On the structure of spaces with Ricci curvature bounded below. I, J. Differential Geom., 46 (1997), pp. 406-480. | Zbl 0902.53034

[16] , On the structure of spaces with Ricci curvature bounded below. II, J. Differential Geom., 54 (2000), pp. 13-35. | Zbl 1027.53042

[17] , On the structure of spaces with Ricci curvature bounded below. III, J. Differential Geom., 54 (2000), pp. 37-74. | Zbl 1027.53043

[18] J. Cheeger and D. Gromoll, The splitting theorem for manifolds of nonnegative Ricci curvature, J. Differential Geometry, 6 (1971/72), pp. 119-128. | Zbl 0223.53033

[19] D. L. Cohn, Measure theory, Birkhäuser Boston Inc., Boston, MA, 1993. Reprint of the 1980 original. | Zbl 0860.28001

[20] M. Erbar, K. Kuwada, and K.-T. Sturm, On the equivalence of the entropic curvature-dimension condition and Bochner’s inequality on metric measure spaces. Preprint, arXiv:1303.4382, 2013. | Zbl 1329.53059

[21] N. Gigli, On the heat flow on metric measure spaces: existence, uniqueness and stability, Calc. Var. PDE, 39 (2010), pp. 101-120. | Zbl 1200.35178

[22] , On the differential structure of metric measure spaces and applications. Preprint, arXiv:1205.6622, 2012.

[23] , Optimal maps in non branching spaces with Ricci curvature bounded from below, Geom. Funct. Anal., 22 (2012), pp. 990-999. | Zbl 1257.53055

[24] , The splitting theorem in non-smooth context. Preprint, arXiv:1302.5555, 2013.

[25] N. Gigli, K. Kuwada, and S.-i. Ohta, Heat flow on Alexandrov spaces, Communications on Pure and Applied Mathematics, 66 (2013), pp. 307-331. | Zbl 1267.58014

[26] N. Gigli and A. Mondino, A PDE approach to nonlinear potential theory in metric measure spaces. Accepted at JMPA, arXiv:1209.3796, 2012. | Zbl 1283.31002

[27] N. Gigli, A. Mondino, and G. Savaré, A notion of convergence of non-compact metric measure spaces and applications. Preprint, 2013. | Zbl 06522136

[28] N. Gigli and S. Mosconi, The Abresch-Gromoll inequality in a non-smooth setting. Accepted at DCDS-A, arXiv:1209.3813, 2012.

[29] N. Gigli, T. Rajala, and K.-T. Sturm, Optimal maps and exponentiation on ffnite dimensional spaces with Ricci curvature bounded from below. Preprint, 2013.

[30] A. Grigor0yan, Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds, Bull. Amer. Math. Soc. (N.S.), 36 (1999), pp. 135-249.[Crossref]

[31] J. Heinonen, Lectures on analysis on metric spaces, Universitext, Springer-Verlag, New York, 2001. | Zbl 0985.46008

[32] , Nonsmooth calculus, Bull. Amer. Math. Soc. (N.S.), 44 (2007), pp. 163-232.

[33] R. Jordan, D. Kinderlehrer, and F. Otto, The variational formulation of the Fokker-Planck equation, SIAM J. Math. Anal., 29 (1998), pp. 1-17. | Zbl 0915.35120

[34] B. Kleiner and J. Mackay, Differentiable structure on metric measure spaces: a primer. Preprint, arXiv:1108.1324, 2011. | Zbl 06586482

[35] K. Kuwada, Duality on gradient estimates and Wasserstein controls, J. Funct. Anal., 258 (2010), pp. 3758-3774. | Zbl 1194.53032

[36] J. Lott and C. Villani, Weak curvature conditions and functional inequalities, J. Funct. Anal., 245 (2007), pp. 311-333. | Zbl 1119.53028

[37] , Ricci curvature for metric-measure spaces via optimal transport, Ann. of Math. (2), 169 (2009), pp. 903-991. | Zbl 1178.53038

[38] S.-i. Ohta, Finsler interpolation inequalities, Calc. Var. Partial Differential Equations, 36 (2009), pp. 211-249.

[39] S.-i. Ohta and K.-T. Sturm, Heat flow on Finsler manifolds, Comm. Pure Appl. Math., 62 (2009), pp. 1386-1433. | Zbl 1176.58012

[40] , Non-contraction of heat flow on Minkowski spaces, Arch. Ration. Mech. Anal., 204 (2012), pp. 917-944. | Zbl 1257.53098

[41] Y. Otsu and T. Shioya, The Riemannian structure of Alexandrov spaces, J. Differential Geom., 39 (1994), pp. 629-658. | Zbl 0808.53061

[42] G. Perelman, Dc structure on Alexandrov Space. Unpublished preprint, available online at http://www.math.psu.edu/petrunin/papers/alexandrov/Cstructure.pdf.

[43] A. Petrunin, Alexandrov meets Lott-Villani-Sturm, Münster J. Math., 4 (2011), pp. 53-64. | Zbl 1247.53038

[44] T. Rajala, Interpolated measures with bounded density in metric spaces satisfying the curvature-dimension conditions of Sturm, J. Funct. Anal., 263 (2012), pp. 896-924. | Zbl 1260.53076

[45] , Local Poincaré inequalities from stable curvature conditions on metric spaces, Calc. Var. Partial Differential Equations, 44 (2012), pp. 477-494. [46] T. Rajala and K.-T. Sturm, Non-branching geodesics and optimalmaps in strong CD(K,1)-spaces. Preprint, arXiv:1207.6754, 2012. | Zbl 1250.53040

[47] N. Shanmugalingam, Newtonian spaces: an extension of Sobolev spaces to metric measure spaces, Rev. Mat. Iberoamericana, 16 (2000), pp. 243-279. | Zbl 0974.46038

[48] K.-T. Sturm, Analysis on local Dirichlet spaces. I. Recurrence, conservativeness and Lp-Liouville properties, J. Reine Angew. Math., 456 (1994), pp. 173-196. | Zbl 0806.53041

[49] , Analysis on local Dirichlet spaces. III. The parabolic Harnack inequality, J. Math. Pures Appl. (9), 75 (1996), pp. 273-297. | Zbl 0854.35016

[50] , On the geometry of metric measure spaces. I, Acta Math., 196 (2006), pp. 65-131.

[51] , On the geometry of metric measure spaces. II, Acta Math., 196 (2006), pp. 133-177.

[52] C. Villani, Optimal transport. Old and new, vol. 338 of Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, Berlin, 2009.

[53] N. Weaver, Lipschitz algebras and derivations. II. Exterior differentiation, J. Funct. Anal., 178 (2000), pp. 64-112. | Zbl 0979.46035