Geodesics in Asymmetic Metric Spaces
Andrea C. G. Mennucci
Analysis and Geometry in Metric Spaces, Tome 2 (2014), / Harvested from The Polish Digital Mathematics Library

In a recent paper [17] we studied asymmetric metric spaces; in this context we studied the length of paths, introduced the class of run-continuous paths; and noted that there are different definitions of “length spaces” (also known as “path-metric spaces” or “intrinsic spaces”). In this paper we continue the analysis of asymmetric metric spaces.We propose possible definitions of completeness and (local) compactness.We define the geodesics using as admissible paths the class of run-continuous paths.We define midpoints, convexity, and quasi-midpoints, but without assuming the space be intrinsic.We distinguish all along those results that need a stronger separation hypothesis. Eventually we discuss how the newly developed theory impacts the most important results, such as the existence of geodesics, and the renowned Hopf-Rinow (or Cohn-Vossen) theorem.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:267188
@article{bwmeta1.element.doi-10_2478_agms-2014-0004,
     author = {Andrea C. G. Mennucci},
     title = {Geodesics in Asymmetic Metric Spaces},
     journal = {Analysis and Geometry in Metric Spaces},
     volume = {2},
     year = {2014},
     zbl = {1310.53039},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_agms-2014-0004}
}
Andrea C. G. Mennucci. Geodesics in Asymmetic Metric Spaces. Analysis and Geometry in Metric Spaces, Tome 2 (2014) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_agms-2014-0004/

[1] Luigi Ambrosio and Paolo Tilli. Selected topics in "analysis in metric spaces". Collana degli appunti. Edizioni Scuola Normale Superiore, Pisa, 2000. | Zbl 1084.28500

[2] D. Bao, S. S. Chern, and Z. Shen. An introduction to Riemann-Finsler Geometry. (Springer-Verlag), 2000. | Zbl 0954.53001

[3] Dmitri Burago, Yuri Burago, and Sergei Ivanov. A course in metric geometry, volume 33 of Graduate Studies inMathematics. American Mathematical Society, Providence, RI, 2001.

[4] H. Busemann. Local metric geometry. Trans. Amer. Math. Soc., 56:200-274, 1944. | Zbl 0061.37403

[5] H. Busemann. The geometry of geodesics, volume 6 of Pure and applied mathematics. Academic Press (New York), 1955.

[6] H. Busemann. Recent synthetic differential geometry, volume 54 of Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer Verlag, 1970. | Zbl 0194.53701

[7] S. Cohn-Vossen. Existenz kürzester wege. Compositio math., Groningen, 3:441-452, 1936. | Zbl 62.0861.01

[8] J.A Collins and J.B Zimmer. An asymmetric Arzelà-Ascoli theorem. Topology and its Applications, 154(11):2312-2322, 2007. | Zbl 1123.26002

[9] A. Duci and A. Mennucci. Banach-like metrics and metrics of compact sets. 2007. | Zbl 06442995

[10] P. Fletcher and W. F. Lindgren. Quasi-uniform spaces, volume 77 of Lecture notes in pure and applied mathematics. Marcel Dekker, 1982.

[11] J. L. Flores, J. Herrera, and M. Sánchez. Gromov, Cauchy and causal boundaries for Riemannian, Finslerian and Lorentzian manifolds. Mem. Amer. Math. Soc., 226(1064):vi+76, 2013. | Zbl 1296.53087

[12] M. Gromov. Metric Structures for Riemannian and Non-Riemannian Spaces, volume 152 of Progress in Mathematics. Birkhäuser Boston, 2007. Reprint of the 2001 edition. | Zbl 1113.53001

[13] J. C. Kelly. Bitopological spaces. Proc. London Math. Soc., 13(3):71-89, 1963. | Zbl 0107.16401

[14] H. P. Künzi. Complete quasi-pseudo-metric spaces. Acta Math. Hungar., 59(1-2):121-146, 1992. | Zbl 0784.54026

[15] H. P. Künzi and M. P. Schellekens. On the Yoneda completion of a quasi-metric space. Theoretical Computer Science, 278(1-2):159 - 194, 2002. Mathematical Foundations of Programming Semantics 1996. | Zbl 1025.54014

[16] A. C. G. Mennucci. Regularity and variationality of solutions to Hamilton-Jacobi equations. part ii: variationality, existence, uniqueness. Applied Mathematics and Optimization, 63(2), 2011.[WoS] | Zbl 1216.49025

[17] A. C. G. Mennucci. On asymmetric distances. Analysis and Geometry in Metric Spaces, 1:200-231, 2013. | Zbl 1293.53081

[18] Athanase Papadopoulos. Metric spaces, convexity and nonpositive curvature, volume 6 of IRMA Lectures in Mathematics and Theoretical Physics. European Mathematical Society (EMS), Zürich, 2005.

[19] I. L. Reilly, P. V. Subrahmanyam, and M. K. Vamanamurthy. Cauchy sequences in quasi-pseudo-metric spaces. Monat.Math., 93:127-140, 1982. | Zbl 0472.54018

[20] Riccarda Rossi, Alexander Mielke, and Giuseppe Savaré. A metric approach to a class of doubly nonlinear evolution equations and applications. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 7(1):97-169, 2008. | Zbl 1183.35164

[21] M. B. Smyth. Quasi-uniformities: reconciling domains with metric spaces. In Mathematical foundations of programming language semantics (New Orleans, LA, 1987), volume 298 of Lecture Notes in Comput. Sci., pages 236-253. Springer, Berlin, 1988.

[22] M. B. Smyth. Completeness of quasi-uniform and syntopological spaces. J. London Math. Soc. (2), 49(2):385-400, 1994.[Crossref] | Zbl 0798.54036

[23] W. A. Wilson. On quasi-metric spaces. Amer. J. Math., 53(3):675-684, 1931.[Crossref] | Zbl 0002.05503

[24] E. M. Zaustinsky. Spaces with non-symmetric distances. Number 34 in Mem. Amer. Math. Soc. AMS, 1959. | Zbl 0115.39802