Dimension Distortion by Sobolev Mappings in Foliated Metric Spaces
Zoltán M. Balogh ; Jeremy T. Tyson ; Kevin Wildrick
Analysis and Geometry in Metric Spaces, Tome 1 (2013), p. 232-254 / Harvested from The Polish Digital Mathematics Library

We quantify the extent to which a supercritical Sobolev mapping can increase the dimension of subsets of its domain, in the setting of metric measure spaces supporting a Poincaré inequality. We show that the set of mappings that distort the dimensions of sets by the maximum possible amount is a prevalent subset of the relevant function space. For foliations of a metric space X defined by a David–Semmes regular mapping Π : X → W, we quantitatively estimate, in terms of Hausdorff dimension in W, the size of the set of leaves of the foliation that are mapped onto sets of higher dimension. We discuss key examples of such foliations, including foliations of the Heisenberg group by left and right cosets of horizontal subgroups.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:266674
@article{bwmeta1.element.doi-10_2478_agms-2013-0005,
     author = {Zolt\'an M. Balogh and Jeremy T. Tyson and Kevin Wildrick},
     title = {Dimension Distortion by Sobolev Mappings in Foliated Metric Spaces},
     journal = {Analysis and Geometry in Metric Spaces},
     volume = {1},
     year = {2013},
     pages = {232-254},
     zbl = {1285.46029},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_agms-2013-0005}
}
Zoltán M. Balogh; Jeremy T. Tyson; Kevin Wildrick. Dimension Distortion by Sobolev Mappings in Foliated Metric Spaces. Analysis and Geometry in Metric Spaces, Tome 1 (2013) pp. 232-254. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_agms-2013-0005/

[1] Arcozzi, N., and Baldi, A. From Grushin to Heisenberg via an isoperimetric problem. J. Math. Anal. Appl. 340, 1 (2008), 165–174. [WoS] | Zbl 1134.53016

[2] Aronszajn, N. Differentiability of Lipschitzian mappings between Banach spaces. Studia Math. 57, 2 (1976), 147–190. [WoS] | Zbl 0342.46034

[3] Astala, K. Area distortion of quasiconformal mappings. Acta Math. 173, 1 (1994), 37–60. | Zbl 0815.30015

[4] Balogh, Z. M., Fässler, K., Mattila, P., and Tyson, J. T. Projection and slicing theorems in Heisenberg groups. Adv. Math. 231, 2 (2012), 569–604. [WoS] | Zbl 1260.28007

[5] Balogh, Z. M., Monti, R., and Tyson, J. T. Frequency of Sobolev and quasiconformal dimension distortion. J. Math. Pures Appl. (9) 99, 2 (2013), 125–149. [WoS] | Zbl 1266.28003

[6] Balogh, Z. M., Tyson, J. T., and Warhurst, B. Sub-Riemannian vs. Euclidean dimension comparison and fractal geometry in Carnot groups. Adv. Math. 220 (2009), 560–619. [WoS] | Zbl 1155.22011

[7] Balogh, Z. M., Tyson, J. T., and Wildrick, K. Frequency of Sobolev dimension distortion of horizontal subgroups of Heisenberg groups. (preprint, arXiv:1303.7094 [math.MG]).

[8] Bellaïche, A. The tangent space in sub-Riemannian geometry. In Sub-Riemannian geometry, vol. 144 of Progr. Math. Birkhäuser, Basel, 1996, pp. 1–78. | Zbl 0862.53031

[9] Bishop, C., and Hakobyan, H. Frequency of dimension distortion under quasisymmetric mappings. (preprint, 2012).

[10] Cheeger, J. Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal. 9, 3 (1999), 428–517. [Crossref] | Zbl 0942.58018

[11] Christensen, J. P. R. Measure theoretic zero sets in infinite dimensional spaces and applications to differentiability of Lipschitz mappings. Publ. Dép. Math. (Lyon) 10, 2 (1973), 29–39. Actes du Deuxième Colloque d’Analyse Fonctionnelle de Bordeaux (Univ. Bordeaux, 1973), I, pp. 29–39. | Zbl 0302.43001

[12] Csörnyei, M. Aronszajn null and Gaussian null sets coincide. Israel J. Math. 111 (1999), 191–201. | Zbl 0952.46030

[13] David, G., and Semmes, S. Regular mappings between dimensions. Publ. Mat. 44, 2 (2000), 369–417. [Crossref] | Zbl 1041.42010

[14] Gehring, F. W. The Lp-integrability of the partial derivatives of a quasiconformal mapping. Acta Math. 130 (1973), 265–277. | Zbl 0258.30021

[15] Gehring, F. W., and Väisälä, J. Hausdorff dimension and quasiconformal mappings. J. London Math. Soc. (2) 6 (1973), 504–512. | Zbl 0258.30020

[16] Hajłasz, P., and Koskela, P. Sobolev met Poincaré. Mem. Amer. Math. Soc. 145, 688 (2000), x+101. | Zbl 0954.46022

[17] Heinonen, J. Lectures on analysis on metric spaces. Universitext. Springer-Verlag, New York, 2001. | Zbl 0985.46008

[18] Heinonen, J., and Koskela, P. Quasiconformal maps in metric spaces with controlled geometry. Acta Math. 181, 1 (1998), 1–61. | Zbl 0915.30018

[19] Heinonen, J., Koskela, P., Shanmugalingam, N., and Tyson, J. T. Sobolev classes of Banach space-valued functions and quasiconformal mappings. J. Anal. Math. 85 (2001), 87–139. | Zbl 1013.46023

[20] Hencl, S., and Honzík, P. Dimension of images of subspaces under Sobolev mappings. Ann. Inst. H. Poincaré Anal. Non Linéaire 29, 3 (2012), 401–411. | Zbl 1245.28006

[21] Hunt, B. R., and Kaloshin, V. Y. How projections affect the dimension spectrum of fractal measures. Nonlinearity 10, 5 (1997), 1031–1046. [Crossref] | Zbl 0903.28008

[22] Hunt, B. R., Sauer, T. D., and Yorke, J. A. Prevalence: a translation-invariant “almost every” on infinite-dimensional spaces. Bull. Amer. Math. Soc. (N.S.) 27, 2 (1992), 217–238. [Crossref] | Zbl 0763.28009

[23] Kaufman, R. P. Sobolev spaces, dimension, and random series. Proc. Amer. Math. Soc. 128, 2 (2000), 427–431. | Zbl 0938.28001

[24] Mackay, J. M., Tyson, J. T., and Wildrick, K. Modulus and Poincaré inequalities on non-self-similar Sierpinski carpets. Geom. Funct. Anal. 23, 3 (2013), 985-1034 [WoS][Crossref] | Zbl 1271.30032

[25] Mattila, P. Geometry of sets and measures in Euclidean spaces, vol. 44 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1995. | Zbl 0819.28004

[26] Ott, W., and Yorke, J. A. Prevalence. Bull. Amer. Math. Soc. (N.S.) 42, 3 (2005), 263–290 (electronic). [Crossref]

[27] Rothschild, L. P., and Stein, E. M. Hypoelliptic differential operators and nilpotent groups. Acta Math. 137, 3-4 (1976), 247–320. | Zbl 0346.35030

[28] Sauer, T. D., and Yorke, J. A. Are the dimensions of a set and its image equal under typical smooth functions? Ergodic Theory Dynam. Systems 17, 4 (1997), 941–956. | Zbl 0884.28006

[29] Seo, J. A characterization of bi-Lipschitz embeddable metric spaces in terms of local bi-Lipschitz embeddability. Math. Res. Lett. 18, 6 (2011), 1179–1202. [Crossref] | Zbl 1273.30054

[30] Shanmugalingam, N. Newtonian spaces: an extension of Sobolev spaces to metric measure spaces. Rev. Mat. Iberoamericana 16, 2 (2000), 243–279. [Crossref] | Zbl 0974.46038

[31] Ziemer, W. P. Weakly differentiable functions, vol. 120 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1989.