Banach manifolds of algebraic elements in the algebra (H) of bounded linear operatorsof bounded linear operators
José Isidro
Open Mathematics, Tome 3 (2005), p. 188-202 / Harvested from The Polish Digital Mathematics Library

Given a complex Hilbert space H, we study the manifold 𝒜 of algebraic elements in Z=H . We represent 𝒜 as a disjoint union of closed connected subsets M of Z each of which is an orbit under the action of G, the group of all C*-algebra automorphisms of Z. Those orbits M consisting of hermitian algebraic elements with a fixed finite rank r, (0< r<∞) are real-analytic direct submanifolds of Z. Using the C*-algebra structure of Z, a Banach-manifold structure and a G-invariant torsionfree affine connection ∇ are defined on M, and the geodesics are computed. If M is the orbit of a finite rank projection, then a G-invariant Riemann structure is defined with respect to which ∇ is the Levi-Civita connection.

Publié le : 2005-01-01
EUDML-ID : urn:eudml:doc:268863
@article{bwmeta1.element.doi-10_2478_BF02479195,
     author = {Jos\'e Isidro},
     title = {Banach manifolds of algebraic elements in the algebra \[\mathcal {L}\]
(H) of bounded linear operatorsof bounded linear operators},
     journal = {Open Mathematics},
     volume = {3},
     year = {2005},
     pages = {188-202},
     zbl = {1124.58003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_BF02479195}
}
José Isidro. Banach manifolds of algebraic elements in the algebra \[\mathcal {L}\]
(H) of bounded linear operatorsof bounded linear operators. Open Mathematics, Tome 3 (2005) pp. 188-202. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_BF02479195/

[1] C.H. Chu and J.M. Isidro: “Manifolds of tripotents in JB*-triples”, Math. Z., Vol. 233, (2000), pp. 741–754. http://dx.doi.org/10.1007/s002090050496 | Zbl 0959.46048

[2] S. Dineen: The Schwarz lemma, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1989. | Zbl 0708.46046

[3] L.A. Harris: “Bounded symmetric homogeneous domains in infinite dimensional spaces”, In: Proceedings on Infinite dimensional Holomorphy, Lecture Notes in Mathematics, Vol. 364, 1973, Springer-Verlag, Berlin, 1973, pp. 13–40.

[4] U. Hirzebruch: “Über Jordan-Algebren und kompakte Riemannsche symmetrische Räume von Rang 1”, Math. Z., Vol. 90, (1965), pp. 339–354. http://dx.doi.org/10.1007/BF01112353 | Zbl 0139.39202

[5] G. Horn: “Characterization of the predual and ideal structure of a JBW*-triple”, Math. Scan., Vol. 61, (1987), pp. 117–133. | Zbl 0659.46062

[6] J.M. Isidro: The manifold of minimal partial isometries in the space (H,K) of bounded linear operators”, Acta Sci. Math. (Szeged), Vol. 66, (2000), pp. 793–808. | Zbl 0973.17040

[7] J.M. Isidro and M. Mackey: “The manifold of finite rank projections in the algebra (H) of bounded linear operators”, Expo. Math., Vol. 20 (2), (2002), pp. 97–116. | Zbl 1009.46036

[8] J.M. Isidro and L. L. Stachó: “On the manifold of finite rank tripotents in JB*-triples”, J. Math. Anal. Appl., to appear. | Zbl 1068.46045

[9] W. Kaup: “A Riemann mapping theorem for bounded symmetric domains in complex Banach spaces”, Math. Z., Vol. 183, (1983), pp. 503–529. http://dx.doi.org/10.1007/BF01173928 | Zbl 0519.32024

[10] W. Kaup: “Über die Klassifikation der symmetrischen Hermiteschen Mannigfaltigkeiten unendlicher Dimension, I, II”, Math. Ann., Vol. 257, (1981), pp. 463–483 and Vol. 262, (1983), pp. 503–529. http://dx.doi.org/10.1007/BF01465868 | Zbl 0482.32010

[11] W. Kaup: “On Grassmannians associated with JB*-triples”, Math. Z., Vol. 236, (2001), pp. 567–584. http://dx.doi.org/10.1007/PL00004842 | Zbl 0988.46048

[12] O. Loos: Bounded symmetric domains and Jordan pairs Mathematical Lectures, University of California at Irvine, 1977.

[13] T. Nomura: “Manifold of primitive idempotents in a Jordan-Hilbert algebra”, J. Math. Soc. Japan, Vol. 45, (1993), pp. 37–58. http://dx.doi.org/10.2969/jmsj/04510037 | Zbl 0791.58011

[14] T. Nomura: “Grassmann manifold of a JH-algebra”, Annals of Global Analysis and Geometry, Vol. 12, (1994), pp. 237–260. http://dx.doi.org/10.1007/BF02108300 | Zbl 0829.46040

[15] H. Upmeier: Symmetric Banach manifolds and Jordan C *-algebras, North Holland Math. Studies, Vol. 104, Amsterdam, 1985. | Zbl 0561.46032