Representation of finite groups and the first Betti number of branched coverings of a universal Borromean orbifold
Masahito Toda
Open Mathematics, Tome 2 (2004), p. 218-249 / Harvested from The Polish Digital Mathematics Library

The paper studies the first homology of finite regular branched coverings of a universal Borromean orbifold called B 4,4,4ℍ3. We investigate the irreducible components of the first homology as a representation space of the finite covering transformation group G. This gives information on the first betti number of finite coverings of general 3-manifolds by the universality of B 4,4,4. The main result of the paper is a criterion in terms of the irreducible character whether a given irreducible representation of G is an irreducible component of the first homology when G admits certain symmetries. As a special case of the motivating argument the criterion is applied to principal congruence subgroups of B 4,4,4. The group theoretic computation shows that most of the, possibly nonprincipal, congruence subgroups are of positive first Betti number.

Publié le : 2004-01-01
EUDML-ID : urn:eudml:doc:268864
@article{bwmeta1.element.doi-10_2478_BF02476541,
     author = {Masahito Toda},
     title = {Representation of finite groups and the first Betti number of branched coverings of a universal Borromean orbifold},
     journal = {Open Mathematics},
     volume = {2},
     year = {2004},
     pages = {218-249},
     zbl = {1078.57017},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_BF02476541}
}
Masahito Toda. Representation of finite groups and the first Betti number of branched coverings of a universal Borromean orbifold. Open Mathematics, Tome 2 (2004) pp. 218-249. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_BF02476541/

[1] A. Borel: “Commesurability classes and Volumes of hyperbolic 3-manifolds”, Journ. Ann. Scuola Norm. Sup. Pisa, Vol. 8, (1981), pp. 1–33.

[2] R.W. Carter: Finite groups of Lie type, Conjugacy classes and complex character, John Wiley and Sons, Chichester-New York-Brisbane-Tronto-Singapore, 1985.

[3] L.E. Dickson: Linear groups with an, exposition of the Galois field theory, Dover Publ., New York, 1958. | Zbl 0082.24901

[4] L.E. Digne and J. Michel: Representation of finite groups of Lie type. London Math. Soc., London, 1991. | Zbl 0815.20014

[5] D. Gorenstein: Finite simple groups. An introduction to their classification, Plenum Press, New York, 1982.

[6] H.M. Hilden, M.T. Lozano and J.M. Montesinos “On the Borromean orbifolds: Geometry and arithmetics”, In: B. Apanasov, W.D. Neuman, A.W. Reid and L. Siebenmann (Eds.): Topology '90, de Gruyter, Berlin, 1992, pp. 133–167. | Zbl 0787.57001

[7] H.M. Hilden, M.T. Lozano and J.M. Montesinos: “On the universal groups of the Borromean rings”, In: B. Apanasov, W.D. Neuman, A.W. Reid and L. Siebenmann (Eds.), Proceedings of the 1987 Siegen confernece on Differential Topology, Springer Verlag, Berlin, 1988, pp. 1–13. | Zbl 0685.57005

[8] N. Jacobson: “Basic Algebra I, II”, 2nd Ed., Freeman, New York, 1985.

[9] S. MacLane: Homology, Springer Verlag, Berlin, 1967.

[10] J.J. Millson: “On the first Betti number of a constant negatively curved manifold”, Jour. Ann. of Math., Vol. 104, (1976), pp. 235–247. http://dx.doi.org/10.2307/1971046 | Zbl 0364.53020

[11] J.G. Ratcliffe: Foundation of hyperbolic manifolds, Springer, New York, 1994.

[12] A.W. Reid: Arithmetic Kleinian groups and their Fuchsian subgroups, Thesis (PhD), University of Aberdeen University of Aberdeen, 1985.

[13] M. Suzuki: Group Theory I, II, Springer Verlag, New York, 1985.

[14] W.P. Thurston: “Three dimensional manifolds, Kleinian groups and hyperbolic geometry”, Jour. Bull. of AMS, Vol. 6, No. 3, (1982), pp. 357–381. http://dx.doi.org/10.1090/S0273-0979-1982-15003-0 | Zbl 0496.57005