Rigidity and flexibility of virtual polytopes
G. Panina
Open Mathematics, Tome 1 (2003), p. 157-168 / Harvested from The Polish Digital Mathematics Library

All 3-dimensional convex polytopes are known to be rigid. Still their Minkowski differences (virtual polytopes) can be flexible with any finite freedom degree. We derive some sufficient rigidity conditions for virtual polytopes and present some examples of flexible ones. For example, Bricard's first and second flexible octahedra can be supplied by the structure of a virtual polytope.

Publié le : 2003-01-01
EUDML-ID : urn:eudml:doc:268858
@article{bwmeta1.element.doi-10_2478_BF02476005,
     author = {G. Panina},
     title = {Rigidity and flexibility of virtual polytopes},
     journal = {Open Mathematics},
     volume = {1},
     year = {2003},
     pages = {157-168},
     zbl = {1032.52011},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_BF02476005}
}
G. Panina. Rigidity and flexibility of virtual polytopes. Open Mathematics, Tome 1 (2003) pp. 157-168. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_BF02476005/

[1] A.D. Alexandrov: Konvexe Polyeder, Berlin, Akademie-Verlag (1958).

[2] Yu. Burago: “Theory of surfaces”, in Encyclopaedia of Math. Sc., Vol. 48, (1992), Geometry 3.

[3] R. Conelly: “Rigidity”, in: Handbook of convex geometry, Gruber and Wills, (1993), pp. 223–271.

[4] V. Danilov: “The geometry of toric varieties”, Russian Math. Surveys, Vol. 33, (1978), pp. 97–154. http://dx.doi.org/10.1070/RM1978v033n02ABEH002305 | Zbl 0425.14013

[5] A. Khovanskii, A. Pukhlikov: “Finitely additive measures of virtual polytopes”, St. Petersburg Math. J., Vol. 4, (1993), pp. 337–356. | Zbl 0791.52010

[6] K. Leichtweiss: Konvexe Mengen, VEB Deutscher Verlag der Wissenschaften, Berlin, 1980.

[7] P. McMullen: “The polytope algebra”, Adv. Math., Vol. 78, (1989), pp. 76–130. http://dx.doi.org/10.1016/0001-8708(89)90029-7

[8] P. McMullen: “On simple polytopes”, Invent. Math., Vol. 113, (1993), pp. 19–111. http://dx.doi.org/10.1007/BF01244313

[9] Y. Martinez-Maure: “De nouvelles inégalités géométriques pour les hérissons”, Arch. Math., Vol. 72, (1999), pp. 444–453. http://dx.doi.org/10.1007/s000130050354

[10] Y. Martinez-Maure: “Contre-exemple à une caractérisation conjecturée de la sphère”, C.R. Acad. Sci. Paris, Vol 332, (2001), pp. 41–44.

[11] G. Panina: “Mixed volumes for non-convex bodies”, Isv. Akad. Nauk Armenii, Matematika, Vol. 28, (1993), pp. 51–59. | Zbl 0839.52005

[12] G. Panina: “The structure of virtual polytope group related to cylinders subgroups”, St. Petersburg Math. J., Vol. 13, (2001), pp. 471–484. | Zbl 1009.52026

[13] G. Panina: “Virtual polytopes and some classical problems”, St. Petersburg Math. J., Vol. 14, (2002), pp. 152–170. | Zbl 1039.52012

[14] H. Radström: “An embedding theorem for spaces of convex sets”, Proc. AMS, Vol. 3, (1952), pp. 165–169. http://dx.doi.org/10.2307/2032477 | Zbl 0046.33304

[15] L. Rodriguez and H. Rosenberg: “Rigidity of certain polyhedra in ℝ3”, Comment. Math. Helv., Vol. 75, (2000), pp. 478–503. http://dx.doi.org/10.1007/s000140050137 | Zbl 0968.52018

[16] I. Sabitov: “The local theory of bendings of surfaces”, in: Encyclopaedia of Math. Sc., Vol. 48, (1992), Geometry 3, pp. 179–250.

[17] O.Ya. Viro: “Some integral calculus based on Euler characteristic”, Topology and Geometry-Rokhlin Seminar, Lecture Notes in Math., 1346, Springer-Verlag, Berlin-New York, 1988, pp. 127–138.

[18] O.Ya. Viro: “Some integral calculus based on Euler characteristic”, Topology and Geometry-Rokhlin Seminar, Lecture Notes in Math., 1346, Springer-Verlag, Berlin-New York, 1988, pp. 127–138.