The representation dimension of domestic weakly symmetric algebras
Rafał Bocian ; Thorsten Holm ; Andrzej Skowroński
Open Mathematics, Tome 2 (2004), p. 67-75 / Harvested from The Polish Digital Mathematics Library

Auslander’s representation dimension measures how far a finite dimensional algebra is away from being of finite representation type. In [1], M. Auslander proved that a finite dimensional algebra A is of finite representation type if and only if the representation dimension of A is at most 2. Recently, R. Rouquier proved that there are finite dimensional algebras of an arbitrarily large finite representation dimension. One of the exciting open problems is to show that all finite dimensional algebras of tame representation type have representation dimension at most 3. We prove that this is true for all domestic weakly symmetric algebras over algebraically closed fields having simply connected Galois coverings.

Publié le : 2004-01-01
EUDML-ID : urn:eudml:doc:268908
@article{bwmeta1.element.doi-10_2478_BF02475951,
     author = {Rafa\l\ Bocian and Thorsten Holm and Andrzej Skowro\'nski},
     title = {The representation dimension of domestic weakly symmetric algebras},
     journal = {Open Mathematics},
     volume = {2},
     year = {2004},
     pages = {67-75},
     zbl = {1062.16005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_BF02475951}
}
Rafał Bocian; Thorsten Holm; Andrzej Skowroński. The representation dimension of domestic weakly symmetric algebras. Open Mathematics, Tome 2 (2004) pp. 67-75. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_BF02475951/

[1] M. Auslander: Representation dimension of artin algebras, Queen Mary College, Mathematics Notes, University of London, 1971, 1–179. Also in: Selected works of Maurice Auslander (eds. I. Reiten, S. Smalø and Ø. Solberg) Part I, Amer. Math. Soc., 1999, pp. 505–574.

[2] R. Bocian, T. Holm and A. Skowroński: “Derived equivalence classification of weakly symmetric algebras of Euclidean type”, Preprint, (2003). | Zbl 1063.16015

[3] R. Bocian and A. Skowroński: “Symmetric special biserial algebras of Euclidean type”, Colloq. Math., Vol. 96, (2003), pp. 121–148. http://dx.doi.org/10.4064/cm96-1-11 | Zbl 1068.16015

[4] R. Bocian and A. Skowroński: “Weakly symmetric algebras of Euclidean type”, Preprint, (2003). | Zbl 1068.16015

[5] R. Bocian and A. Skowroński: “Socle deformations of selfinjective algebras of Euclidean type”, Preprint, (2003). | Zbl 1186.16007

[6] K. Erdmann, T. Holm, O. Iyama and J. Schröer: “Radical embeddings and representation dimension”, Advances Math., to appear. (arXiv:math.RT/0210362). | Zbl 1062.16006

[7] D. Happel: Triangulated categories in the representation theory of finite-dimensional algebras, London Mathematical Society Lecture Note Series 119, Cambridge University Press, 1988.

[8] D. Happel and D. Vossieck: “Minimal algebras of infinite representation type with preprojective component”, Manuscr. Math., Vol. 42, (1983), pp. 221–243. http://dx.doi.org/10.1007/BF01169585 | Zbl 0516.16023

[9] T. Holm: “The representation dimension of Schur algebras: the tame case”, Preprint, (2003).

[10] T. Holm: “Representation dimension of some tame blocks of finite groups”, Algebra Colloquium, Vol. 10:3, (2003), pp. 275–284. | Zbl 1035.20008

[11] K. Igusa and G. Todorov: “On the finitistic global dimension conjecture for artin algebras”, Preprint, (2002). | Zbl 1082.16011

[12] O. Iyama: “Finiteness of representation dimension”, Proc. Amer. Math. Soc., Vol. 131, (2003), pp. 1011–1014. http://dx.doi.org/10.1090/S0002-9939-02-06616-9 | Zbl 1018.16010

[13] H. Krause: “Stable equivalence preserves representation type”, Comment. Math. Helv., Vol. 72, (1997), pp. 266–284. http://dx.doi.org/10.1007/s000140050016 | Zbl 0901.16008

[14] H. Krause and G. Zwara: “Stable equivalence and generic modules”, Bull. London Math. Soc., Vol. 32, (2000), pp. 615–618. http://dx.doi.org/10.1112/S0024609300007293 | Zbl 1025.16009

[15] H. Lenzing and A. Skowroński: “On selfinjective algebras of Euclidean type”, Colloq. Math., Vol. 79, (1999), pp. 71–76. | Zbl 0947.16005

[16] J. Rickard: “Derived categories and stable equivalence”, J. Pure Appl. Algebra, Vol. 61, (1989), pp. 303–317. http://dx.doi.org/10.1016/0022-4049(89)90081-9 | Zbl 0685.16016

[17] C. M. Ringel: Tame algebras and integral quadratic forms, Lecture Notes in Math. 1099, Springer Verlag, Berlin, 1984.

[18] A. Skowroński: “Selfinjective algebras of polynomial growth”, Math. Ann., Vol. 285, (1989), pp. 177–199. http://dx.doi.org/10.1007/BF01443513 | Zbl 0653.16021

[19] A. Skowroński and J. Waschbüsch: “Representation-finite biserial algebras”, J. Reine Angew. Math., Vol. 345, (1983), pp. 172–181. | Zbl 0511.16021

[20] C. Xi: “Representation dimension and quasi-hereditary algebras”, Advances Math., Vol. 168, (2002), pp. 193–212. http://dx.doi.org/10.1006/aima.2001.2046

[21] B. Zimmermann Huisgen, The finitistic dimension conjectures-a tale of 3.5 decades. In: Facchini, Alberto (ed.) et al., Abelian groups and modules. Proceedings of the Padova conference, Padova, Italy, June 23–July 1, 1994. Kluwer (1995). | Zbl 0862.16004