Quaternionic geometry of matroids
Tamás Hausel
Open Mathematics, Tome 3 (2005), p. 26-38 / Harvested from The Polish Digital Mathematics Library

Building on a recent paper [8], here we argue that the combinatorics of matroids are intimately related to the geometry and topology of toric hyperkähler varieties. We show that just like toric varieties occupy a central role in Stanley’s proof for the necessity of McMullen’s conjecture (or g-inequalities) about the classification of face vectors of simplicial polytopes, the topology of toric hyperkähler varieties leads to new restrictions on face vectors of matroid complexes. Namely in this paper we will give two proofs that the injectivity part of the Hard Lefschetz theorem survives for toric hyperkähler varieties. We explain how this implies the g-inequalities for rationally representable matroids. We show how the geometrical intuition in the first proof, coupled with results of Chari [3], leads to a proof of the g-inequalities for general matroid complexes, which is a recent result of Swartz [20]. The geometrical idea in the second proof will show that a pure O-sequence should satisfy the g-inequalities, thus showing that our result is in fact a consequence of a long-standing conjecture of Stanley.

Publié le : 2005-01-01
EUDML-ID : urn:eudml:doc:268688
@article{bwmeta1.element.doi-10_2478_BF02475653,
     author = {Tam\'as Hausel},
     title = {Quaternionic geometry of matroids},
     journal = {Open Mathematics},
     volume = {3},
     year = {2005},
     pages = {26-38},
     zbl = {1079.52009},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_BF02475653}
}
Tamás Hausel. Quaternionic geometry of matroids. Open Mathematics, Tome 3 (2005) pp. 26-38. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_BF02475653/

[1] R. Bielawski, A. Dancer: “The geometry and topology of toric hyperkähler manifolds”, Comm. Anal. Geom., Vol. 8, (2000), pp. 727–760. | Zbl 0992.53034

[2] L. Billera, C. Lee: “Sufficiency of McMullen’s conditions for f-vectors of simplicial polytopes”, Bull. Amer. Math. Soc. (N.S.), Vol. 2, (1980), pp. 181–185. http://dx.doi.org/10.1090/S0273-0979-1980-14712-6 | Zbl 0431.52009

[3] M. Chari: “Two decompositions in topological combinatorics with applications to matroid complexes”, Trans. Amer. Math. Soc, Vol. 349, (1997), pp. 3925–3943. http://dx.doi.org/10.1090/S0002-9947-97-01921-1 | Zbl 0889.52013

[4] P. Griffiths, J. Harris: Principles of algebraic geometry, Wiley, New York, 1978. | Zbl 0408.14001

[5] M. Harada, N. Proudfoot: “Properties of the residual circle action on a toric hyperkahler variety”, Pac. J. Math, Vol. 214, (2004), pp. 263–284. http://dx.doi.org/10.2140/pjm.2004.214.263 | Zbl 1064.53057

[6] W. Fulton: Introduction to Toric Varieties, Princeton University Press, New Jersey, 1993. | Zbl 0813.14039

[7] T. Hausel: “Mirror symmetry and Langlands duality in the non-Abelian Hodge theory of a curve”, preprint, arXiv:math.AG/0406380.

[8] T. Hausel, B. Sturmfels: “Toric hyperkähler varieties”, Documenta Mathematica, Vol. 7, (2002), pp. 495–534, [arXiv: math.AG/0203096] | Zbl 1029.53054

[9] T. Hausel, E. Swartz: “Intersection forms of toric hyperkähler varieties”, preprint, arXiv:math.AG/0306369. | Zbl 1165.53352

[10] T. Hibi: “What can be said about pure O-sequences?”, J. Combin. Theory Ser. A, Vol. 50, (1989), pp. 319–322. http://dx.doi.org/10.1016/0097-3165(89)90025-3

[11] N. Hitchin: “The self-duality equations on a Riemann surface”, Proc. London Math. Soc., Vol. 55, (1987), pp. 59–126. | Zbl 0634.53045

[12] H. Konno: “Cohomology rings of toric hyperkähler manifolds”, Internat. J. Math., Vol. 11, (2000), pp. 1001–1026. http://dx.doi.org/10.1142/S0129167X00000490 | Zbl 0991.53027

[13] C.M. Lopez: “Chip firing and the Tutte polynomial”,Ann. Combinatorics,Vol,1, (1997),pp. 253–259. | Zbl 0901.05004

[14] P. McMullen: “The numbers of faces of simplicial polytopes”, Israel J. Math., Vol. 9, (1971), pp. 559–570. | Zbl 0209.53701

[15] H. Nakajima: Lectures on Hilbert schemes of points on surfaces, University Lecture Series, 18. American Mathematical Society, Providence, RI, 1999.

[16] H. Nakajima: “Quiver varieties and finite-dimensional representations of quantum affine algebras”, J. Amer. Math. Soc., Vol. 14, (2001), pp. 145–238. http://dx.doi.org/10.1090/S0894-0347-00-00353-2 | Zbl 0981.17016

[17] R. Stanley: “The number of faces of a simplicial convex polytope”, Adv. in Math., Vol. 35, (1980), pp. 236–238. http://dx.doi.org/10.1016/0001-8708(80)90050-X

[18] R. Stanley: Cohen-Macaulay complexes, in Higher combinatorics (Proc. NATO Advanced Study Inst., Berlin, 1976) Reidel, Dordrecht, 1977, pp. 51–62. NATO Adv. Study Inst. Ser., Ser. C: Math. and Phys. Sci., 31.

[19] R.P. Stanley: Combinatorics and Commutative Algebra, 2nd ed., Birkhäuser, Boston, 1996. | Zbl 0838.13008

[20] E. Swartz: “ g-elements of matroid complexes”, Journal of Comb. Theory Ser. B, Vol. 88, (2003), pp. 369–375. http://dx.doi.org/10.1016/S0095-8956(03)00038-8 | Zbl 1033.52011