Bivariant Chern classes for morphisms with nonsingular target varieties
Shoji Yokura
Open Mathematics, Tome 3 (2005), p. 614-626 / Harvested from The Polish Digital Mathematics Library

W. Fulton and R. MacPherson posed the problem of unique existence of a bivariant Chern class-a Grothendieck transformation from the bivariant theory F of constructible functions to the bivariant homology theory H. J.-P. Brasselet proved the existence of a bivariant Chern class in the category of embeddable analytic varieties with cellular morphisms. In general however, the problem of uniqueness is still unresolved. In this paper we show that for morphisms having nonsingular target varieties there exists another bivariant theory 𝔽˜ of constructible functions and a unique bivariant Chern class γ: 𝔽˜ .

Publié le : 2005-01-01
EUDML-ID : urn:eudml:doc:268871
@article{bwmeta1.element.doi-10_2478_BF02475622,
     author = {Shoji Yokura},
     title = {Bivariant Chern classes for morphisms with nonsingular target varieties},
     journal = {Open Mathematics},
     volume = {3},
     year = {2005},
     pages = {614-626},
     zbl = {1106.14001},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_BF02475622}
}
Shoji Yokura. Bivariant Chern classes for morphisms with nonsingular target varieties. Open Mathematics, Tome 3 (2005) pp. 614-626. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_BF02475622/

[1] J.-P. Brasselet: “Existence des classes de Chern en théorie bivariante”, Astérisque, Vol. 101–102, (1981), pp. 7–22. | Zbl 0529.55009

[2] J.-P. Brasselet, J. Schürmann and S. Yokura: “Bivariant Chern classes and Grothendieck transformations”, Math. AG/0404132. | Zbl 1109.14008

[3] J.-P. Brasselet and M.-H. Schwartz: “Sur les classes de Chern d’un ensemble analytique complexe”, Astérisque, Vol. 82–83, (1981), pp. 93–148. | Zbl 0471.57006

[4] N. Chriss and V. Ginzburg: Representation theory and complex geometry, Birkhäuser, 1997. | Zbl 0879.22001

[5] A. Dimca: Sheaves in Topology, Springer-Verlag, 2004.

[6] W. Fulton: Intersection Theory, Springer-Verlag, 1984.

[7] W. Fulton and R. MacPherson: “Categorical frameworks for the study of singular spaces”, Memoirs of Amer. Math. Soc., Vol. 243, (1981). | Zbl 0467.55005

[8] V. Ginzburg: “G-Modules, Springer’s Representations and Bivariant Chern Classes”, Adv. in Maths., Vol. 61, (1986), pp. 1–48. http://dx.doi.org/10.1016/0001-8708(86)90064-2

[9] V. Ginzburg: “Geometric methods in the representation theory of Hecke algebras and quantum groups”, In: A. Broer and A. Daigneault (Eds.): Representation theories and algebraic geometry (Montreal, PQ, 1997), Kluwer Acad. Publ., Dordrecht, 1998, pp. 127–183.

[10] M. Kashiwara and P. Schapira: Sheaves on Manifolds, Springer-Verlag, 1990. | Zbl 0709.18001

[11] G. Kennedy: “MacPherson’s Chern classes of singular algebraic varieties”, Comm. Algebra, Vol. 9 (18), (1990), pp. 2821–2839. | Zbl 0709.14016

[12] M. Kwieciński: “Formule du produit pour les classes caractéristiques deChern-Schwartz-MacPherson et homologie d’intersection”, C. R. Acad. Sci. Paris, Vol. 314, (1992) pp. 625–628. | Zbl 0755.14007

[13] M. Kwieciński: “Sur le transformé de Nash et la construction du graph de MacPherson”, In: Thèse, Université de Provence, 1994.

[14] M. Kwieciński and S. Yokura: “Product formula of the twisted MacPherson class”, Proc. Japan Acad., Vol. 68, (1992) pp. 167–171. | Zbl 0781.57012

[15] R. MacPherson: “Chern classes for singular algebraic varieties”, Ann. of Math., Vol. 100, (1974), pp. 423–432. http://dx.doi.org/10.2307/1971080 | Zbl 0311.14001

[16] C. Sabbah: Espaces conormaux bivariants, Thèse, l’Université Paris, Vol. 7, 1986.

[17] P. Schapira: “Operations on constructible functions”, J. Pure Appl. Algebra, Vol. 72, (1991), pp. 83–93. http://dx.doi.org/10.1016/0022-4049(91)90131-K

[18] J. Schürmann: “A generalized Verdier-type Riemann-Roch theorem for Chern-Schwartz Mac-Pherson classes”, math. AG/0202175.

[19] J. Schürmann: “A general construction of partial Grothendieck transformations”, math. AG/0209299.

[20] J. Schürmann: Topology of singular spaces and constructible sheaves, Monografie Matematyczne, Vol. 63, (New Series), Birkhäuser, Basel, 2003.

[21] M.-H. Schwartz: “Classes caractéristiques définies par une stratification d’unevariété analytique complexe”, C. R. Acad. Sci. Paris, Vol. 260, (1965), pp. 3262–3264, 3535–3537. | Zbl 0139.16901

[22] M.-H. Schwartz: “Classes et caractères de Chern des espaces linéaires”, Pub. Int. Univ. Lille, 2 Fasc. 3, (1980).

[23] O. Viro: “Some integral calculus based on the Euler characteristic”, Springer Lect. Notes Math., Vol. 1346, (1989), pp. 127–138. http://dx.doi.org/10.1007/BFb0082775

[24] S. Yokura: “On a Verdier-type Riemann-Roch for Chern-Schwartz-MacPherson class”, Topology and Its Applications, Vol. 94, (1999), pp. 315–327. http://dx.doi.org/10.1016/S0166-8641(98)00037-6 | Zbl 0928.14010

[25] S. Yokura: “On the uniqueness problem of the bivariant Chern classes”, Documenta Mathematica, Vol. 7, (2002), pp. 133–142. | Zbl 1074.14504

[26] S. Yokura: “Bivariant theories of constructible functions and Grothendieck transformations”, Topology and Its Applications, Vol. 123, (2002), pp. 283–296. http://dx.doi.org/10.1016/S0166-8641(01)00197-3 | Zbl 1045.55003

[27] J. Zhou: Classes de Chern en théorie bivariante, Thèse, Université Aix-Marseille, Vol. 2, 1995.

[28] J. Zhou: “Morphisme cellulaire et classes de Chern bivariantes”, Ann. Fac. Sci. Toulouse Math., Vol. 9, (2000), pp. 161–192.