On the computation of scaling coefficients of Daubechies' wavelets
Dana Černá ; Václav Finěk
Open Mathematics, Tome 2 (2004), p. 399-419 / Harvested from The Polish Digital Mathematics Library

In the present paper, Daubechies' wavelets and the computation of their scaling coefficients are briefly reviewed. Then a new method of computation is proposed. This method is based on the work [7] concerning a new orthonormality condition and relations among scaling moments, respectively. For filter lengths up to 16, the arising system can be explicitly solved with algebraic methods like Gröbner bases. Its simple structure allows one to find quickly all possible solutions.

Publié le : 2004-01-01
EUDML-ID : urn:eudml:doc:268909
@article{bwmeta1.element.doi-10_2478_BF02475237,
     author = {Dana \v Cern\'a and V\'aclav Fin\v ek},
     title = {On the computation of scaling coefficients of Daubechies' wavelets},
     journal = {Open Mathematics},
     volume = {2},
     year = {2004},
     pages = {399-419},
     zbl = {1076.65126},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_BF02475237}
}
Dana Černá; Václav Finěk. On the computation of scaling coefficients of Daubechies' wavelets. Open Mathematics, Tome 2 (2004) pp. 399-419. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_BF02475237/

[1] B. Han: “Analysis and construction of optimal multivariate biortogonal wavelets with compact support”,SIAM J. Math. Anal., Vol. 31, (2000), pp. 274–304. http://dx.doi.org/10.1137/S0036141098336418 | Zbl 0943.65163

[2] B. Han: “Approximation properties and construction of Hermite interpolants and biorthogonal multiwavelets”,J. Approx. Theory,Vol. 110, (2001),pp. 18–53. http://dx.doi.org/10.1006/jath.2000.3545 | Zbl 0986.42020

[3] B. Han: “Symmetric multivariate orthogonal refinable functions”,Appl. Comput. Harmon. Anal., to appear. | Zbl 1058.42028

[4] A. Cohen and R.D. Ryan:Wavelets and Multiscale Signal Processing, Chapman & Hall, London, 1995. | Zbl 0848.42021

[5] A. Cohen: “Wavelet methods in numerical analysis”, In: P.G. Ciarlet et al. (Eds.):Handbook of numerical analysis, Vol. VII, Amsterdam: North-Holland/Elsevier, 2000, pp. 417–711.

[6] I. Daubechies:Ten Lectures on Wavelets. Society for industrial and applied mathematics, Philadelphia, 1992.

[7] V. Finěk:Approximation properties of wavelets and relations among scaling moments II, Preprint, TU Dresden, 2003.

[8] W. Lawton: “Necessary and sufficient conditions for constructing orthonormal wavelet bases”,J. Math. Phys., Vol. 32, (1991), pp. 57–61. http://dx.doi.org/10.1063/1.529093 | Zbl 0757.46012

[9] A.K. Louis, P. Maass and A. Rieder:Wavelets: Theorie und Anwendungen, B.G. Teubner, Stuttgart, 1994.

[10] G. Polya and G. Szegö:Aufgaben und Lehrsätze aus der Analysis, Vol. II, Springer-Verlag, Berlin, 1971. | Zbl 0219.00003

[11] W.C. Shann and C.C. Yen: “On the exampleact values of the orthogonal scaling coefficients of lenghts 8 and 10”,Appl. Comput. Harmon. Anal., Vol. 6, (1999), pp 109–112. http://dx.doi.org/10.1006/acha.1997.0240

[12] G. Strang and T. Nguyen:Wavelets and Filter Banks, Wellesley-Cambridge Press, 1996.

[13] P. Wojtaszczyk:A Mathematical introduction to wavelets, Cambridge University Press, 1997.