On log canonical divisors that are log quasi-numerically positive
Shigetaka Fukuda
Open Mathematics, Tome 2 (2004), p. 377-381 / Harvested from The Polish Digital Mathematics Library

Let (X Δ) be a four-dimensional log variety that is projective over the field of complex numbers. Assume that (X, Δ) is not Kawamata log terminal (klt) but divisorial log terminal (dlt). First we introduce the notion of “log quasi-numerically positive”, by relaxing that of “numerically positive”. Next we prove that, if the log canonical divisorK X+Δ is log quasi-numerically positive on (X, Δ) then it is semi-ample.

Publié le : 2004-01-01
EUDML-ID : urn:eudml:doc:268866
@article{bwmeta1.element.doi-10_2478_BF02475234,
     author = {Shigetaka Fukuda},
     title = {On log canonical divisors that are log quasi-numerically positive},
     journal = {Open Mathematics},
     volume = {2},
     year = {2004},
     pages = {377-381},
     zbl = {1071.14019},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_2478_BF02475234}
}
Shigetaka Fukuda. On log canonical divisors that are log quasi-numerically positive. Open Mathematics, Tome 2 (2004) pp. 377-381. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_2478_BF02475234/

[1] F. Ambro:The moduli b-divisor of an lc-trivial fibration, math. AG/0308143, August 2003. | Zbl 1094.14025

[2] O. Fujino: “Base point free theorem of Reid-Fukuda type”,J. Math. Sci. Univ. Tokyo, Vol. 7, (2000), pp. 1–5. | Zbl 0971.14009

[3] T. Fujita: “Fractionally logarithmic canonical rings of algebraic surfaces”,J. Fac. Sci. Univ. Tokyo Sect. IA Math., Vol. 30, (1984), pp. 685–696. | Zbl 0543.14004

[4] S. Fukuda:A note on the ampleness of numerically positive log canonical and anti-log canonical divisors, math. AG/0305357, May 2003.

[5] Y. Kawamata, K. Matsuda and K. Matsuki: “Introduction to the minimal model problem”, In:Algebraic geometry, Sendai (Japan), 1985, North-Holland, Amsterdam, 1987, pp. 283–360.

[6] S. Keel, K. Matsuki and J. McKerman: “Log abundance theorem for threefolds”,Duke Math. J., Vol. 75, (1994), pp. 99–119. http://dx.doi.org/10.1215/S0012-7094-94-07504-2 | Zbl 0818.14007

[7] J. Kollár (Ed.).Flips and abundance for algebraic threefolds, Société Mathématique de France, Paris, 1992.

[8] J. Kollár and S. Mori:Birational geometry of algebraic varieties, Cambridge University Press, Cambridge, 1998. | Zbl 0926.14003

[9] K. Matsuki:A correction to the paper “Log abundance theorem for threefolds”, math. AG/0302360, February 2003.

[10] V. Shokurov: “3-fold log flips”,Russian Acad. Sci. Izv. Math., Vol. 40, (1993), pp. 95–202. http://dx.doi.org/10.1070/IM1993v040n01ABEH001862