Zero-one completely positive matrices and the A(R, S) classes
G. Dahl ; T. A. Haufmann
Special Matrices, Tome 4 (2016), p. 296-304 / Harvested from The Polish Digital Mathematics Library

A matrix of the form A = BBT where B is nonnegative is called completely positive (CP). Berman and Xu (2005) investigated a subclass of CP-matrices, called f0, 1g-completely positive matrices. We introduce a related concept and show connections between the two notions. An important relation to the so-called cut cone is established. Some results are shown for f0, 1g-completely positive matrices with given graphs, and for {0,1}-completely positive matrices constructed from the classes of (0, 1)-matrices with fixed row and column sums.

Publié le : 2016-01-01
EUDML-ID : urn:eudml:doc:285553
@article{bwmeta1.element.doi-10_1515_spma-2016-0024,
     author = {G. Dahl and T. A. Haufmann},
     title = {Zero-one completely positive matrices and the A(R, S) classes},
     journal = {Special Matrices},
     volume = {4},
     year = {2016},
     pages = {296-304},
     zbl = {06624284},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_spma-2016-0024}
}
G. Dahl; T. A. Haufmann. Zero-one completely positive matrices and the A(R, S) classes. Special Matrices, Tome 4 (2016) pp. 296-304. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_spma-2016-0024/

[1] A. Berman and N. Shaked-Monderer. Completely Positive Matrices. World Scientific Publishing Co. Pte Ltd., Singapore, 2003. | Zbl 1030.15022

[2] A. Berman and C. Xu. {0,1} Completely positive matrices. Linear Algebra Appl., 399:35–51, Apr 2005. | Zbl 1072.15027

[3] A. Berman and C. Xu. Uniform and minimal {0,1}-cp matrices. Linear and Multilinear Algebra, 55(5):439–456, Sep 2007. | Zbl 1133.15012

[4] R. A. Brualdi. Combinatorial Matrix Classes, volume 13. Cambridge University Press, Cambridge, 2006. | Zbl 1106.05001

[5] S. Bundfuss and M. Dür. An adaptive linear approximation algorithm for copositive programs. SIAM J. Optim., 20(1):30–53, 2008. | Zbl 1187.90187

[6] S. Burer. On the copositive representation of binary and continuous nonconvex quadratic programs. Math. Program., 120(2):479–495, Apr 2008. | Zbl 1180.90234

[7] G. Dahl. A note on diagonally dominant matrices. Linear Algebra Appl., 317(1-3):217–224, Sep 2000. | Zbl 0970.15017

[8] M. Deza and M. Laurent. Geometry of Cuts and Metrics. Springer, 1997. | Zbl 0885.52001

[9] M. Dür. Copositive Programming - A Survey. In Moritz Diehl, Francois Glineur, Elias Jarlebring, and Wim Michiels, editors, Recent Advances in Optimization and its Applications in Engineering, number 1, pages 3–21. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[10] A. V. Karzanov. Metrics and undirected cuts. Math. Program., 32(2):183–198, 1985. | Zbl 0565.90016

[11] F. Laburthe, M. Deza, and M. Laurent. The Hilbert basis of the cut cone over the complete graph on six vertices. Technical report, 1995.

[12] OEIS Foundation Inc. The On-Line Encyclopedia of Integer Sequences, https://oeis.org, 2016.

[13] J. Zhong. Binary ranks and binary factorizations of nonnegative integermatrices. Electronic J. Linear Algebra, 23(June):540– 552, 2012. | Zbl 1250.15019