Matrix rank/inertia formulas for least-squares solutions with statistical applications
Yongge Tian ; Bo Jiang
Special Matrices, Tome 4 (2016), p. 130-140 / Harvested from The Polish Digital Mathematics Library

Least-Squares Solution (LSS) of a linear matrix equation and Ordinary Least-Squares Estimator (OLSE) of unknown parameters in a general linear model are two standard algebraical methods in computational mathematics and regression analysis. Assume that a symmetric quadratic matrix-valued function Φ(Z) = Q − ZPZ0 is given, where Z is taken as the LSS of the linear matrix equation AZ = B. In this paper, we establish a group of formulas for calculating maximum and minimum ranks and inertias of Φ(Z) subject to the LSS of AZ = B, and derive many quadratic matrix equalities and inequalities for LSSs from the rank and inertia formulas. This work is motivated by some inference problems on OLSEs under general linear models, while the results obtained can be applied to characterize many algebraical and statistical properties of the OLSEs.

Publié le : 2016-01-01
EUDML-ID : urn:eudml:doc:276723
@article{bwmeta1.element.doi-10_1515_spma-2016-0013,
     author = {Yongge Tian and Bo Jiang},
     title = {Matrix rank/inertia formulas for least-squares solutions with statistical applications},
     journal = {Special Matrices},
     volume = {4},
     year = {2016},
     pages = {130-140},
     zbl = {1333.15006},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_spma-2016-0013}
}
Yongge Tian; Bo Jiang. Matrix rank/inertia formulas for least-squares solutions with statistical applications. Special Matrices, Tome 4 (2016) pp. 130-140. http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_spma-2016-0013/

[1] B.E. Cain, E.M. De Sá. The inertia of Hermitian matrices with a prescribed 2 × 2 block decomposition. Linear Multilinear Algebra 31(1992), 119–130. [Crossref] | Zbl 0756.15024

[2] Y. Chabrillac, J.P. Crouzeix. Definiteness and semidefiniteness of quadratic forms revisited. Linear Algebra Appl. 63(1984), 283–292. | Zbl 0548.15027

[3] C.M. da Fonseca. The inertia of certain Hermitian block matrices. Linear Algebra Appl. 274(1998), 193–210. | Zbl 0929.15019

[4] J. Dancis. The possible inertias for a Hermitianmatrix and its principal submatrices. Linear Algebra Appl. 85(1987), 121–151. | Zbl 0614.15011

[5] J. Dancis. Several consequences of an inertia theorem. Linear Algebra Appl. 136(1990), 43–61. | Zbl 0712.15021

[6] F.A. Graybill. An Introduction to Linear Statistical Models. Vol. I, McGraw–Hill, 1961. | Zbl 0121.35605

[7] L. Guttman. General theory and methods for matric factoring. Psychometrika 9(1944), 1–16. [Crossref] | Zbl 0060.31212

[8] A. Hatcher. Algebraic Topology. Cambridge University Press, 2002. | Zbl 1044.55001

[9] E.V. Haynsworth. Determination of the inertia of a partitioned Hermitian matrix. Linear Algebra Appl. 1(1968), 73–81. | Zbl 0155.06304

[10] E.V. Haynsworth, A.M. Ostrowski. On the inertia of some classes of partitionedmatrices. Linear Algebra Appl. 1(1968), 299– 316. | Zbl 0186.33704

[11] I.J. James. The topology of Stiefel manifolds. Cambridge University Press, 1976. | Zbl 0337.55017

[12] C.R. Johnson, L. Rodman. Inertia possibilities for completions of partial Hermitian matrices. Linear Multilinear Algebra 16(1984), 179–195. [Crossref] | Zbl 0548.15020

[13] Y. Liu, Y. Tian. More on extremal ranks of the matrix expressions A − BX ± X*B* with statistical applications. Numer. Linear Algebra Appl. 15(2008), 307–325. [WoS] | Zbl 1212.15029

[14] Y. Liu, Y. Tian. Max-min problems on the ranks and inertias of the matrix expressions A − BXC ± (BXC)* with applications. J. Optim. Theory Appl. 148(2011), 593–622. [WoS] | Zbl 1223.90077

[15] G. Marsaglia, G.P.H. Styan. Equalities and inequalities for ranks of matrices. Linear Multilinear Algebra 2(1974), 269–292. [Crossref] | Zbl 0297.15003

[16] S.K. Mitra. The matrix equations AX = C, XB = D. Linear Algebra Appl. 59(1984), 171–181.

[17] R. Penrose. A generalized inverse for matrices. Proc. Cambridge Phil. Soc. 51(1955), 406–413. | Zbl 0065.24603

[18] S. Puntanen, G.P.H. Styan, J. Isotalo. Matrix Tricks for Linear Statistical Models, Our Personal Top Twenty. Springer, 2011. | Zbl 1291.62014

[19] S.R. Searle. Linear Models. Wiley, 1971. | Zbl 0218.62071

[20] Y. Tian. Equalities and inequalities for inertias of Hermitian matrices with applications. Linear Algebra Appl. 433(2010), 263–296. [WoS] | Zbl 1205.15033

[21] Y. Tian. Maximization and minimization of the rank and inertia of the Hermitian matrix expression A − BX − (BX)* with applications. Linear Algebra Appl. 434(2011), 2109–2139. [WoS] | Zbl 1211.15022

[22] Y. Tian. Solving optimization problems on ranks and inertias of some constrained nonlinearmatrix functions via an algebraic linearization method. Nonlinear Analysis 75(2012), 717–734. | Zbl 1236.65070

[23] Y. Tian. Formulas for calculating the extremum ranks and inertias of a four-term quadratic matrix-valued function and their applications. Linear Algebra Appl. 437(2012), 835–859. [WoS] | Zbl 1252.15026

[24] Y. Tian. Solutions to 18 constrained optimization problems on the rank and inertia of the linear matrix function A + BXB*. Math. Comput. Modelling 55(2012), 955–968. | Zbl 1255.15010

[25] Y. Tian. Some optimization problems on ranks and inertias of matrix-valued functions subject to linear matrix equation restrictions. Banach J. Math. Anal. 8(2014), 148–178. | Zbl 1278.15019

[26] Y. Tian. A new derivation of BLUPs under a random-effects model. Metrika 78(2015), 905–918. [Crossref][WoS] | Zbl 1329.62264

[27] Y. Tian. A matrix handling of predictions under a general linear random-effects model with new observations. Electron. J. Linear Algebra 29(2015), 30–45. [Crossref] | Zbl 1329.62321

[28] Y. Tian. A survey on rank and inertia optimization problems of the matrix-valued function A + BXB*. Numer. Algebra Contr. Optim. 5(2015), 289–326. | Zbl 1327.15007

[29] Y. Tian. How to characterize properties of general Hermitian quadratic matrix-valued functions by rank and inertia. In: Advances in Linear Algebra Researches, I. Kyrchei, (ed.), Nova Publishers, New York, pp. 150–183, 2015.

[30] Y. Tian. Some equalities and inequalities for covariance matrices of estimators under linear model. Statist. Papers, DOI:10.1007/s00362-015-0707-x. [Crossref]

[31] Y. Tian,W. Guo. On comparison of dispersionmatrices of estimators under a constrained linear model. Stat. Methods Appl., DOI:10.1007/s10260-016-0350-2. [Crossref]