Explicit formulas for the constituent matrices. Application to the matrix functions
R. Ben Taher ; M. Rachidi
Special Matrices, Tome 3 (2015), / Harvested from The Polish Digital Mathematics Library

We present a constructive procedure for establishing explicit formulas of the constituents matrices. Our approach is based on the tools and techniques from the theory of generalized Fibonacci sequences. Some connections with other results are supplied. Furthermore,we manage to provide tractable expressions for the matrix functions, and for illustration purposes we establish compact formulas for both the matrix logarithm and the matrix pth root. Some examples are also provided.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:270030
@article{bwmeta1.element.doi-10_1515_spma-2015-0004,
     author = {R. Ben Taher and M. Rachidi},
     title = {Explicit formulas for the constituent matrices. Application to the matrix functions},
     journal = {Special Matrices},
     volume = {3},
     year = {2015},
     zbl = {1315.15005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_spma-2015-0004}
}
R. Ben Taher; M. Rachidi. Explicit formulas for the constituent matrices. Application to the matrix functions. Special Matrices, Tome 3 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_spma-2015-0004/

[1] J. Abderramán Marrero, R. Ben Taher and M. Rachidi, On explicit formulas for the principal matrix logarithm, Applied Mathematics and Computation Vol. 220 (2013), p. 142-148. [WoS] | Zbl 1329.65091

[2] J. Abderramán Marrero, R. Ben Taher, Y. El Khattabi and M. Rachidi, On explicit formulas of the principal matrix p − th root by polynomial decompositions, Applied Mathematics and Computation Vol. 242 (2014), p. 435-443. [WoS] | Zbl 1334.15020

[3] R. Ben Taher and M. Rachidi, Linear matrix differential equations of higher-order and applications, Electronic Journal of Differential Equations Vol. 2008 No.95 (2008), p.1-12. | Zbl 1169.15303

[4] R. Ben Taher and M. Rachidi, On the matrix powers and exponential by r-generalized Fibonacci sequences methods: the companion matrix case, Linear Algebra and Its Applications Vol. 370 (2003), p. 341-353. | Zbl 1031.15019

[5] R. Ben Taher and M. Rachidi, Linear recurrence relations in the algebra matrices and applications, Linear Algebra and Its Applications Vol. 330 (2001), p. 15-24. | Zbl 0983.15018

[6] R. Ben Taher, I. Bensaoud and M. Rachidi; Dynamic solutions and computation of the powers and exponential of matrix, International Journal of Mathematics, Game Theory and Algebra Vol. 13 No. 6 (2003), p. 455-463. | Zbl 1088.65532

[7] R. Ben Taher, M. Mouline and M. Rachidi, Fibonacci-Horner decomposition of the matrix exponential and the fundamental solution, Electronic Linear Algebra Vol. 15 (2006), p. 178-190. | Zbl 1108.65073

[8] R. Ben Taher, Y. El khatabi and M. Rachidi, On the polynomial decompositions of the principal matrix p − th root and applications, Int. Journal of Contemp. Math. Sciences, Vol. 9, No. 3 (2014), p. 141-152 . | Zbl 1334.15020

[9] F-C. Chang, A Direct Approach to the Constituent Matrices of an Arbitrary Matrix with Multiple Eigenvalues, Proceedings of the IEEE, Vol. 65 No. 10 (October 1977), p. 1509-1510.

[10] W. J. Culver, On the existence and uniqueness of the real logarithm of matrix, Proceeding of the American Mathematical Society Vol. 17 No. 5 (1966), p. 1146-1151. | Zbl 0143.26402

[11] F. Dubeau,W. Motta, M. Rachidi and O. Saeki, On weighted r-generalized Fibonacci sequences, Fibonacci Quarterly Vol. 35 (1997), p. 102-110. | Zbl 0886.11010

[12] F. R. Gantmacher, Theory of Matrices. Chelsea Publishing Company, New York, 1959. | Zbl 0085.01001

[13] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis. Cambridge Univ. Press, Cambridge, UK, 1991. | Zbl 0729.15001

[14] Sh-H. Hou and Ed. Hou, Recursive computation of inverses of confluent Vandermonde matrices, The Electronic Journal of Mathematics and Technology Vol. 1 Issue 1, ISSN 1933-2823, (2007)

[15] P. Lancaster and M. Tismenetsky The Theory of Matrices: With Applications. Orlando Academic Press- Computer Science and Applied Marthematics, 1985.

[16] W.G. Kelly and A.C. Peterson, Difference equations: an introduction with applications, Academic Press, San Diego 1991.

[17] M. Mouline and M. Rachidi, Application of Markov chains properties to r-generalized Fibonacci sequences, Fibonacci Quarterly Vol. 37 (1999), p. 34-38. | Zbl 0937.11004

[18] R. F. Rinehart, The Equivalence of Definitions of a Matrice Function, The AmericanMathematicalMonthly Vol. 62 No. 6 (Jun - Jul. 1955), p. 395-414 | Zbl 0065.07003

[19] H.J. Runckel, U. Pittelkow. Practical computation of matrix functions. Linear Algebra Appl. Vol. 49 (1983), p. 161-178. | Zbl 0514.65025

[20] R. P. Stanley, Enumerative combinatorics, Cambridge University Press, U.K. Vol. I 1997. | Zbl 0889.05001

[21] A. Sadeghi, A. Izani, Md. Ismail and A. Ahmad, Computing the pth Roots of a Matrix with Repeated Eigenvalues, Applied Mathematical Sciences Vol. 5, No. 53 (2011), p. 2645-2661. | Zbl 1246.65075

[22] G. Sobczyk The Missing Spectral Basis in Algebra and Number Theory, The American Mathematical Monthly Vol. 108 No.4 (Apr.,2001), p. 336-346. | Zbl 0983.11001

[23] L. Verde-Star, Divided differences and linearly recursive sequences, Studies in Applied Mathematics Vol. 95, (1995), p. 433-456. | Zbl 0843.65094

[24] L. Verde-Star, Functions of matrices, Linear Algebra and Its Applications Vol. 406 (2005), p. 285-300.

[25] L. Verde-Star, Interpolation approach to the spectral resolution of square matrices, L’Enseignement Mathématique Vol. 2 52 (2006), p. 239-253.