Exact solutions of supersymmetric Burgers equation with Bosonization procedure
Bo Ren ; Xiao-Nan Gao ; Jun Yu ; Ping Liu
Open Mathematics, Tome 13 (2015), / Harvested from The Polish Digital Mathematics Library

Using bosonization approach, the N=1 supersymmetric Burgers (SB) system is changed to a system of coupled bosonic equations. The difficulties caused by intractable anticommuting fermionic fields can be effectively avoided with the approach. By solving the coupled bosonic equations, the traveling wave solutions of the SB system can be obtained with the mapping and deformation method. Besides, the richness of the localized excitations of the supersymmetric integrable system is discovered. In the meanwhile, the similarity reduction solutions of the SB system are also studied with the Lie point symmetries theory.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:271754
@article{bwmeta1.element.doi-10_1515_math-2015-0047,
     author = {Bo Ren and Xiao-Nan Gao and Jun Yu and Ping Liu},
     title = {Exact solutions of supersymmetric Burgers equation with Bosonization procedure},
     journal = {Open Mathematics},
     volume = {13},
     year = {2015},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_math-2015-0047}
}
Bo Ren; Xiao-Nan Gao; Jun Yu; Ping Liu. Exact solutions of supersymmetric Burgers equation with Bosonization procedure. Open Mathematics, Tome 13 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_math-2015-0047/

[1] Wess J., Bagger J., Supersymmetry and Supergravity, Princeton University Press, 1992

[2] Witten E., Constraints on supersymmetry breaking, Nucl. Phys. B, 1982, 202, 253-316

[3] Kupershmidt B.A., A super Korteweg-de Vries equation: An integrable system, Phys. Lett. A, 1984, 102, 213-215

[4] Mathieu P., Supersymmetric extension of the Korteweg-de Vries equation, J. Math. Phys., 1988, 28, 2499-2506; Mathieu P., The Painlevé property for fermionic extensions of the Korteweg-de Vries equation, Phys. Lett. A, 1988, 128, 169-171 | Zbl 0665.35076

[5] Kupershmidt B.A., Super long waves, Mech. Res. Commun., 1986, 13, 47-51

[6] Hlavatý L., The Painlevé analysis of fermionic extensions of KdV and Burgers equations, Phys. Lett. A, 1989, 137, 173-178

[7] Martin Y.I., Radul A.O., A supersymmetric extension of the Kadomtsev-Petvashvili hierarchy, Commun. Math. Phys., 1985, 98, 65-77

[8] Chaichan M., Kulish P.P., On the method of inverse scattering problem and Bäcklund transformations for supersymmetric equations, Phys. Lett. B, 1978, 78, 413-416

[9] Liu Q.P., Popowicz Z., Tian K., Supersymmetric reciprocal transformation and its applications, J. Math. Phys., 2010, 51, 093511-1-24 [WoS] | Zbl 1309.37061

[10] Mathieu P., Open problems for the superKdV equations, arXiv:0005007 [math-ph]

[11] Plyushchay M.S., Deformed Heisenberg algebra, fractional spin fields, and supersymmetry without fermions, Ann. Phys., 1996, 245, 339-360; Efetov K.B., Pépin C., Meier H., Exact bosonization for an interacting Fermi gas in arbitrary diemsions, Phys. Rev. Lett., 2009, 103, 186403-1-4. | Zbl 0882.17027

[12] Andrea S., Restuccia A., Sotomayor A., An operator valued extension of the super Korteweg-de Vries equations, J. Math. Phys., 2001, 42, 2625-2634 | Zbl 1061.35102

[13] Gao X.N., Lou S.Y., Bosonization of supersymmetric KdV equation, Phys. Lett. B, 2012, 707, 209-215

[14] Ren B., Lin J., Yu J., Supersymmetric Ito equation: Bosonization and exact solutions, AIP Advances, 2013, 3, 042129-1-12

[15] Olver P.J., Application of Lie Group to Differential Equation, Springer, Berlin, 1986; Bluman G.W., Anco S.C., Symmetry and Integration Methods for Differential Equations, Springer, New York, 2002

[16] Bluman G., Cole J., General similarity solution of the heat equation, J. Math. Mech., 1969, 18, 1025-1042 | Zbl 0187.03502

[17] Clarkson P.A., Kruskal M., New similarity reductions of the Boussinesq equation, J. Math. Phys., 1989, 30, 2201-2213 | Zbl 0698.35137

[18] Lou S.Y., Ma H.C., Non-Lie symmetry groups of (2+1)-dimensional nonlinear systems obtained from a simple direct method, J. Phys. A: Math. Gen., 2005, 38, L129-L137

[19] Ren B., Xu X.J., Lin J., Symmetry group and exact solutions for the (2+1)-dimensional Ablowitz-Kaup-Newell-Segur equation, J. Math. Phys., 2009, 50, 123505-1-9 | Zbl 05772318

[20] Li B., Wang C., Chen Y., Symmetry, full symmetry groups, and some exact solutions to a generalized Davey-Stewartson system, J. Math. Phys., 2008, 49, 103503-1-13 [WoS] | Zbl 1152.81527

[21] Burgers J.M., Mathematical Examples Illustrating Relations Occurring in the Theory of Turbulent Fluid Motion, Verh. Nederl. Akad. Wetensh. Afd. Wetensch. Afd. Natuurk. Sect. 1., 1939, 17, 1-53. | Zbl 0061.45709

[22] Biler P., Funaki T., Woyczynski W.A., Fractal Burgers equations, J. Differ. Equations, 1998, 148, 9-46 | Zbl 0911.35100

[23] Sugimoto N., Burgers equation with a fractional derivative; hereditary effects on nonlinear acoustic waves, J. Fluid Mech., 1991, 225, 631-653 | Zbl 0721.76011

[24] Miškinis P., Some properties of fractional Burgers equation, Math. Model. Anal., 2002, 7, 151-158 | Zbl 0999.35088

[25] Yang X.J., Machado J.A.T., Hristov J., Nonlinear dynamics for local fractional Burgers’ equation arising in fractal flow, Nonlinear Dyn., 2015, 1-5

[26] Carstea A.S., Ramani A., Grammaticos B., Linearisable supersymmetric equations, Chaos, Solitons and Fractals, 2002, 14, 155-158 | Zbl 1004.34028