An extended Prony’s interpolation scheme on an equispaced grid
Dovile Karalienė ; Zenonas Navickas ; Raimondas Čiegis ; Minvydas Ragulskis
Open Mathematics, Tome 13 (2015), / Harvested from The Polish Digital Mathematics Library

An interpolation scheme on an equispaced grid based on the concept of the minimal order of the linear recurrent sequence is proposed in this paper. This interpolation scheme is exact when the number of nodes corresponds to the order of the linear recurrent function. It is shown that it is still possible to construct a nearest mimicking algebraic interpolant if the order of the linear recurrent function does not exist. The proposed interpolation technique can be considered as the extension of the Prony method and can be useful for describing noisy and defected signals.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:270946
@article{bwmeta1.element.doi-10_1515_math-2015-0031,
     author = {Dovile Karalien\.e and Zenonas Navickas and Raimondas \v Ciegis and Minvydas Ragulskis},
     title = {An extended Prony's interpolation scheme on an equispaced grid},
     journal = {Open Mathematics},
     volume = {13},
     year = {2015},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_math-2015-0031}
}
Dovile Karalienė; Zenonas Navickas; Raimondas Čiegis; Minvydas Ragulskis. An extended Prony’s interpolation scheme on an equispaced grid. Open Mathematics, Tome 13 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_math-2015-0031/

[1] Badeau R., David B., High-resolution spectral analysis of mixtures of complex exponentials modulated by polynomials, IEEE Trans. Signal Process., 2006, 54, 1341–1350. [Crossref]

[2] Badeau R., Richard G., David B., Performance of ESPRIT for estimating mixtures of complex exponentials modulated by polynomials, IEEE Trans. Signal Process., 2008, 56, 492–504. [WoS][Crossref]

[3] Ehlich H., Zeller K., Auswertung der Normen von Interpolationsoperatoren, Math. Ann., 1996, 164, 105–112. [Crossref] | Zbl 0136.04604

[4] Higham N.J., The numerical stability of barycentric Lagrange interpolation, IMA J. Numer. Anal., 2004, 24, 547–556. [Crossref] | Zbl 1067.65016

[5] Navickas Z., Bikulciene L., Expressions of solutions of ordinary differential equations by standard functions, Mathematical Modeling and Analysis, 2006, 11, 399–412. | Zbl 1124.34301

[6] Peter T., Plonaka G., A generalized Prony method for reconstruction of sparse sums of eigenfunctions of linear operators, Inverse Problems, 2013, 29, 025001. [Crossref][WoS]

[7] Platte R.B., Trefethen L.N., Kuijlaars A.B.J., Impossibility of fast stable approximation of analytic functions from equispaced samples, SIAM Review, 2011, 53, 308–314. [WoS][Crossref] | Zbl 1247.41001

[8] Ragulskis M., Lukoseviciute K., Navickas Z., Palivonaite R., Short-term time series forecasting based on the identification of skeleton algebraic sequences, Neurocomputing, 2011, 64, 1735–1747. [WoS][Crossref]

[9] Runge C., Uber empirische Funktionen and die Interpolation zwischen aquidistanten Ordinaten, Z. Math. Phys., 1901, 46 224– 243. | Zbl 32.0272.02

[10] Salzer H.E., Lagrangian interpolation at the Chebyshev points xn;υ = cos(υπ/n), υ = 0(1)n; some unnoted advantages, Computer J., 1972, 15, 156–159. | Zbl 0242.65007

[11] Schonhage A., Fehlerfortpflanzung bei Interpolation, Numer. Math., 1961, 3, 62–71. [Crossref] | Zbl 0125.07501

[12] Trefethen L.N., Pachon R., Platte R.B., Driscoll T.A., Chebfun Version 2, http://www.comlab.ox.ac.uk/chebfun/, Oxford University, 2008.

[13] Turetskii A.H., The bounding of polynomials prescribed at equally distributed points, Proc. Pedag. Inst. CityplaceVitebsk, 1940, 3, 117–127.

[14] Osborne M.R., Smyth G.K., A Modified Prony Algorithm For Exponential Function Fitting, SIAM Journal of Scientific Computing, 1995, 16, 119–138. | Zbl 0812.62070

[15] Martin C., Miller J., Pearce K., Numerical solution of positive sum exponential equations, Applied Mathematics and Computation, 1989, 34, 89–93. | Zbl 0685.65047

[16] Fuite J., Marsh R.E., Tuszynski J.A., An application of Prony’s sum of exponentials method to pharmacokinetic data analysis, Commun. Comput. Phys., 2007, 2, 87–98.

[17] Giesbrecht M., Labahn G., Wen-shin Lee, Symbolic-numeric sparse interpolation of multivariate polynomials, Journal of Symbolic Computation, 2009, 44, 943–959. | Zbl 1167.65003

[18] Steedly W., Ying C.J., Moses O.L., A modified TLS-Prony method using data decimation, IEEE Transactions on Signal Processing, 1992, 42, 2292–2303. [Crossref]

[19] Kurakin V.L., Kuzmin A.S., Mikhalev A.V., Nechavev A.A., Linear recurring sequneces over rings and modules, Journal of Mathematical Sciences, 1995, 76, 2793–2915. | Zbl 0859.11001

[20] Kurakin V., Linear complexity of polinear sequences, Disctrete Math. Appl., 2001, 11, 1–51. [Crossref] | Zbl 1053.94010

[21] Potts D., Tasche M., Parameter estimation for multivariate exponential sums, Electron. Trans. Numer. Anal., 2013, 40, 204–224. | Zbl 1305.65093

[22] Kaltofen E., Villard G., On the complexity of computing determinants, Computers Mathematics Proc. Fifth Asian Symposium (ASCM 2001), Lecture Notes Series on Computing, 2001, 9, 13–27. | Zbl 1012.65505

[23] Kaw A., Egwu K., Numerical Methods with Applications, Textbooks collection Book 11, 2010, ch. 5.