Two bounds on the noncommuting graph
Stefano Nardulli ; Francesco G. Russo
Open Mathematics, Tome 13 (2015), / Harvested from The Polish Digital Mathematics Library

Erdős introduced the noncommuting graph in order to study the number of commuting elements in a finite group. Despite the use of combinatorial ideas, his methods involved several techniques of classical analysis. The interest for this graph has become relevant during the last years for various reasons. Here we deal with a numerical aspect, showing for the first time an isoperimetric inequality and an analytic condition in terms of Sobolev inequalities. This last result holds in the more general context of weighted locally finite graphs.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:271038
@article{bwmeta1.element.doi-10_1515_math-2015-0027,
     author = {Stefano Nardulli and Francesco G. Russo},
     title = {Two bounds on the noncommuting graph},
     journal = {Open Mathematics},
     volume = {13},
     year = {2015},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_math-2015-0027}
}
Stefano Nardulli; Francesco G. Russo. Two bounds on the noncommuting graph. Open Mathematics, Tome 13 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_math-2015-0027/

[1] Abdollahi A., Akbari S., Maimani H.R., Non-commuting graph of a group, J. Algebra, 2006, 298, 468–492 | Zbl 1105.20016

[2] Ambrosio L., Gigli N., Mondino A., Rajala T., Riemannian Ricci curvature lower bounds in metric measure spaces with σ–finite measure, Trans. Amer. Math. Soc. (in press), preprint available at http://arxiv.org/pdf/1207.4924v2.pdf | Zbl 1317.53060

[3] Ambrosio L., Mondino A., Savaré G., On the Bakry–Émery condition, the gradient estimates and the Local–to–Global property of RCD*(k, n) metric measure spaces, J. Geom. Anal. (in press), preprint available at http://arxiv.org/pdf/1309.4664v1.pdf | Zbl 1335.35088

[4] Aubin T., Nonlinear analysis on manifolds: Monge–Ampére equations, Grundlehren der Mathematischen Wissenschaften, 252, Springer, Berlin, 1982 | Zbl 0512.53044

[5] Bakry D., Coulhon T., Ledoux M., Saloff–Coste L., Sobolev inequalities in disguise, Indiana Univ. Math. J., 1995, 44, 1033–1074

[6] Chung F.R.K., Spectral Graph Theory, CBMS Regional Conference Series in Mathematics, 92, AMS publications, New York, 1996

[7] Chung F.R.K., Grigor’yan A., Yau S.T., Higher eigenvalues and isoperimetric inequalities on riemannian manifolds and graphs, Comm. Anal. Geom., 2000, 8, 969–1026 | Zbl 1001.58022

[8] Chung F.R.K., Discrete isoperimetric inequalities, In: Surveys in differential geometry, Vol. IX, Int. Press, Somerville, MA, 2004, 53–82 | Zbl 1067.53025

[9] Darafsheh M.R., Groups with the same non-commuting graph, Discrete Appl. Math., 2009, 157, 833–837 [WoS] | Zbl 1184.20023

[10] Hebey E., Nonlinear analysis on manifolds: Sobolev spaces and inequalities, Courant Lecture Notes in Mathematics, Vol.5, New York University Courant Institute of Mathematical Sciences, New York, 1999 | Zbl 0981.58006

[11] Hofmann K.H., Russo F.G., The probability that x and y commute in a compact group, Math. Proc. Cambridge Phil. Soc., 2012, 153, 557–571 [WoS] | Zbl 1261.22006

[12] Hofmann K.H., Russo F.G., The probability that xm and yn commute in a compact group, Bull. Aust. Math. Soc., 2013, 87, 503– 513 [WoS] | Zbl 1271.22002

[13] Moghaddamfar A.R., About noncommuting graphs, Siberian Math. J., 2005, 47, 1112–1116 | Zbl 1139.20019

[14] Mondino A., Nardulli S., Existence of isoperimetric regions in noncompact riemannian manifolds under Ricci or scalar curvature conditions, Comm. Anal. Geom., preprint available at http://arxiv.org/pdf/1210.0567v1.pdf | Zbl 06610800

[15] Nardulli S., The isoperimetric profile of a noncompact Riemannian manifold for small volumes, Calc. Var. PDE, 2014, 49, 173–195 | Zbl 1293.49107

[16] Neumann B.H., A problem of Paul Erd˝os on groups, J. Aust. Math. Soc., 1976, 21, 467–472 | Zbl 0333.05110

[17] Russo F.G., Problems of connectivity between the Sylow graph, the prime graph and the non-commuting graph of a group, Adv. Pure Math., 2012, 2, 373–378