Computing the numerical range of Krein space operators
Natalia Bebiano ; J. da Providência ; A. Nata ; J.P. da Providência
Open Mathematics, Tome 13 (2015), / Harvested from The Polish Digital Mathematics Library

Consider the Hilbert space (H,〈• , •〉) equipped with the indefinite inner product[u,v]=v*J u,u,v∈ H, where J is an indefinite self-adjoint involution acting on H. The Krein space numerical range WJ(T) of an operator T acting on H is the set of all the values attained by the quadratic form [Tu,u], with u ∈H satisfying [u,u]=± 1. We develop, implement and test an alternative algorithm to compute WJ(T) in the finite dimensional case, constructing 2 by 2 matrix compressions of T and their easily determined elliptical and hyperbolical numerical ranges. The numerical results reported here indicate that this method is very efficient, since it is faster and more accurate than either of the existing algorithms. Further, it may yield easy solutions for the inverse indefinite numerical range problem. Our algorithm uses an idea of Marcus and Pesce from 1987 for generating Hilbert space numerical ranges of matrices of size n.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:268706
@article{bwmeta1.element.doi-10_1515_math-2015-0014,
     author = {Natalia Bebiano and J. da Provid\^encia and A. Nata and J.P. da Provid\^encia},
     title = {Computing the numerical range of Krein space operators},
     journal = {Open Mathematics},
     volume = {13},
     year = {2015},
     zbl = {1310.65058},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_math-2015-0014}
}
Natalia Bebiano; J. da Providência; A. Nata; J.P. da Providência. Computing the numerical range of Krein space operators. Open Mathematics, Tome 13 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_math-2015-0014/

[1] Y.H. Au-Yeung and N.K. Tsing, An extension of the Hausdorff-Toeplitz theorem on the numerical range, Proc. Amer. Math. Soc., 89 (1983) 215–218. | Zbl 0525.47002

[2] N. Bebiano, R. Lemos, J. da Providência and G. Soares, On generalized numerical ranges of operators on an indefinite inner product space, Linear and Multilinear Algebra 52 No. 3–4, (2004) 203–233. | Zbl 1059.15029

[3] N. Bebiano, H. Nakazato, J. da Providência, R. Lemos and G. Soares, Inequalities for JHermitian matrices, Linear Algebra Appl. 407 (2005) 125–139. | Zbl 1091.15024

[4] N. Bebiano, J. da Providência, A. Nata and G. Soares, Krein Spaces Numerical Ranges and their Computer Generation, Electron. J. Linear Algebra, 17 (2008) 192–208. | Zbl 1147.15017

[5] N. Bebiano, J. da Providência, R. Teixeira, Flat portions on the boundary of the indefinite numerical range of 3 x 3 matrices, Linear Algebra Appl. 428 (2008) 2863-2879. [WoS] | Zbl 1144.15016

[6] N. Bebiano, I. Spitkovsky, Numerical ranges of Toeplitz operators with matrix symbols, Linear Algebra Appl., 436 (2012) 1721–1726. [WoS] | Zbl 1248.47005

[7] N. Bebiano, J. da Providência, A. Nata and J. P. da Providência, An inverse problem for the indefinite numerical range, Linear Algebra Appl. to appear. | Zbl 1309.15035

[8] M.-T. Chien and H. Nakazato, The numerical range of a tridiagonal operator, J. Math. Anal. Appl., 373, No. 1 (2011), 297–304. | Zbl 1205.47007

[9] C.F. Dunkl, P. Gawron, J.A. Holbrook, Z. Puchala and K. Zyczkowski, Numerical shadows: measures and densities of numerical range, Linear Algebra Appl. 434 (2011) 2042–2080. [WoS] | Zbl 1227.15019

[10] C. Crorianopoulos, P. Psarrakos and F. Uhlig. A method for the inverse numerical range problem. Linear Algebra Appl. 24 (2010) 055019.

[11] I.Gohberg, P.Lancaster and L.Rodman, Matrices and Indefinite Scalar Product. Birkhäuser, Basel-Boston, 1983.

[12] R.A. Horn and C.R. Johnson, Matrix Analysis. Cambridge University Press, New York, 1985. | Zbl 0576.15001

[13] R.A. Horn and C.R. Johnson, Topics in Matrix Analysis. Cambridge University Press, Cambridge, 1991. | Zbl 0729.15001

[14] C.-K. Li and L. Rodman, Shapes and computer generation of numerical ranges of Krein space operators. Electron. J. Linear Algebra, 3 (1998) 31–47. | Zbl 0905.47027

[15] C.-K. Li and L. Rodman, Remarks on numerical ranges of operators in spaces with an indefinite metric, Proc. Amer. Math. Soc. 126 No. 4, (1998) 973–982. [Crossref] | Zbl 0897.15012

[16] C.-K. Li, N.K. Tsing and F. Uhlig. Numerical ranges of an operator on an indefinite inner product space. Electron. J. Linear Algebra 1 (1996) 1–17. | Zbl 0851.15018

[17] M. Marcus and C. Pesce, Computer generated numerical ranges and some resulting theorems. Linear and Multilinear Algebra, 20 (1987), 121–157. | Zbl 0626.65038

[18] P.J. Psarrakos, Numerical range of linear pencils, Linear Algebra Appl. 317 (2000), 127-141. | Zbl 0966.15014

[19] F. Uhlig, Faster and more accurate computation of the field of values boundary for n by n matrices, Linear and Multilinear Algebra 62(5) (2014), 554-567. | Zbl 1295.65051