Cost-efficiency in multivariate Lévy models
Ludger Rüschendorf ; Viktor Wolf
Dependence Modeling, Tome 3 (2015), / Harvested from The Polish Digital Mathematics Library

In this paper we determine lowest cost strategies for given payoff distributions called cost-efficient strategies in multivariate exponential Lévy models where the pricing is based on the multivariate Esscher martingale measure. This multivariate framework allows to deal with dependent price processes as arising in typical applications. Dependence of the components of the Lévy Process implies an influence even on the pricing of efficient versions of univariate payoffs.We state various relevant existence and uniqueness results for the Esscher parameter and determine cost efficient strategies in particular in the case of price processes driven by multivariate NIG- and VG-processes. From a monotonicity characterization of efficient payoffs we obtain that basket options are generally inefficient in Lévy markets when pricing is based on the Esscher measure.We determine efficient versions of the basket options in real market data and show that the proposed cost efficient strategies are also feasible from a numerical viewpoint. As a result we find that a considerable efficiency loss may arise when using the inefficient payoffs.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:270841
@article{bwmeta1.element.doi-10_1515_demo-2015-0001,
     author = {Ludger R\"uschendorf and Viktor Wolf},
     title = {Cost-efficiency in multivariate L\'evy models},
     journal = {Dependence Modeling},
     volume = {3},
     year = {2015},
     zbl = {1320.91146},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_demo-2015-0001}
}
Ludger Rüschendorf; Viktor Wolf. Cost-efficiency in multivariate Lévy models. Dependence Modeling, Tome 3 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_demo-2015-0001/

[1] O. E. Barndorff-Nielsen (1977). Exponentially decreasing distributions for the logarithm of particle size. Proc. Roy. Soc. London Ser. A, 353(1674), 401–419.

[2] O. E. Barndorff-Nielsen, J. Kent, and M. Sørensen (1982). Normal variance mean-mixtures and z-distributions. Internat. Statist. Rev., 50(2), 145–159. [Crossref] | Zbl 0497.62019

[3] C. Bernard, P. P. Boyle, and S. Vanduffel (2014). Explicit representation of cost-efficient strategies. Finance, 35(2), 5–55.

[4] C. Bernard, F. Moraux, L. Rüschendorf, and S. Vanduffel (2015). Optimal payoffs under state-dependent preferences. To appear in Quant. Finance, DOI:10.1080/14697688.2014.981576. [WoS][Crossref]

[5] C. Bernard, L. Rüschendorf, and S. Vanduffel (2014). Optimal claims with fixed payoff structure. J. Appl. Probab., 51A, 175–188. [Crossref] | Zbl 1331.91156

[6] P. Blæsild (1981). The two-dimensional hyperbolic distribution and related distributions, with an application to Johannsen’s bean data. Biometrika, 68(1), 251–263. [Crossref] | Zbl 0463.62048

[7] C. Burgert and L. Rüschendorf (2006). On the optimal risk allocation problem. Statistics & Decisions, 24(1), 153–171. | Zbl 1186.91117

[8] T. Chan (1999). Pricing contingent claims on stocks driven by Lévy processes. Ann. Appl. Probab., 9(2), 504–528. [Crossref] | Zbl 1054.91033

[9] J. E. Jr. Dennis and R. B. Schnabel (1996). Numerical Methods for Unconstrained Optimization and Nonlinear Equations. SIAM, Philadelphia.

[10] P. Dybvig (1988a). Distributional analysis of portfolio choice. J. Business, 61(3), 369–393. [Crossref]

[11] P. Dybvig (1988b). Inefficient dynamic portfolio strategies or how to throw away a million dollars in the stock market. Rev. Financ. Stud., 1(1), 67–88. [Crossref]

[12] E. Eberlein and U. Keller (1995). Hyperbolic distributions in finance. Bernoulli, 1(3), 281–299. [Crossref] | Zbl 0836.62107

[13] E. Eberlein, A. Papapantoleon and A. N. Shiryaev (2009). Esscher transform and the duality principle for multidimensional semimartingales. Ann. Appl. Probab., 19(5), 1944–1971. [Crossref][WoS] | Zbl 1233.91268

[14] F. Esche and M. Schweizer (2005). Minimal entropy preserves the Lévy property: How and why. Stochastic Process. Appl., 115(2), 299–327. | Zbl 1075.60049

[15] H. Föllmer and A. Schied (2004). Stochastic Finance. An Introduction in Discrete Time. 2nd revised and extended edition, de Gruyter, Berlin. | Zbl 1126.91028

[16] H. U. Gerber and E. S. W. Shiu (1994). Option pricing by Esscher transforms. T. Soc. Actuaries, 46, 99–191.

[17] T. Goll and J. Kallsen (2000). Optimal portfolios for logarithmic utility. Stochastic Process. Appl., 89(1), 31–48. | Zbl 1048.91064

[18] T. Goll and L. Rüschendorf (2001). Minimax and minimal distance martingale measures and their relationship to portfolio optimization. Finance Stoch., 5(4), 557–581. | Zbl 0997.91022

[19] E. A. v. Hammerstein (2010). Generalized Hyperbolic Distributions: Theory and Application to CDO Pricing. PhD thesis, University of Freiburg i. Br.

[20] E. A. v. Hammerstein, E. Lütkebohmert, L. Rüschendorf, and V. Wolf (2014). Optimality of payoffs in Lévy models. Appl. Finance, 17(6), 1-46. | Zbl 1298.91172

[21] F. Hubalek and C. Sgarra (2006). Comparisons of dependence for stationary Markov processes. Quant. Finance, 6(2), 125–145. [Crossref]

[22] E. Jouini and H. Kallal (2001). Efficient trading strategies in the presence of market frictions. Rev. Financ. Stud., 14(2), 343–369. [Crossref]

[23] J. Kallsen and A. N. Shiryaev (2002). The cumulant process and Esscher’s change of measure. Finance Stoch., 6(4), 397–428. | Zbl 1035.60042

[24] E. Luciano and P. Semeraro (2010). A generalized normal mean-variance mixture for return processes in finance. Int. J. Theor. Appl. Finance, 13(3), 415–440. [Crossref] | Zbl 1196.91065

[25] D. B. Madan and F. Milne (1991). Option pricing with VG martingale components. Math. Finance, 1(4), 39–55. [Crossref] | Zbl 0900.90105

[26] T. Mäkeläinen, K. Schmidt, and G. P. H. Styan (1981). On the existence and uniqueness of the maximum likelihood estimate of a vector-valued parameter in fixed-size samples. Ann. Statist., 9(4), 758–767. [Crossref] | Zbl 0473.62004

[27] S. Raible (2000). Lévy processes in Finance: Theory, Numerics, and Empirical Facts. PhD thesis, University of Freiburg i. Br.. | Zbl 0966.60044

[28] L. Rüschendorf and V. Wolf (2014). On the method of optimal portfolio choice by cost-efficiency. Preprint.

[29] K.-I. Sato (1999). Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge. | Zbl 0973.60001

[30] A. Takahashi and K. Yamamoto (2013). Generating a target payoff distribution with the cheapest dynamic portfolio: An application to hedge fund replication. Quant. Finance, 13(10), 1559–1573. [Crossref][WoS] | Zbl 1284.91532

[31] P. Tankov (2010). Financial Modeling with Lévy Processes. Lecture Notes.

[32] S. Vanduffel, A. Chernih, M. Maj, and W. Schoutens (2009). A note on the suboptimality of path-dependent payoffs in Lévy markets. Appl. Math. Finance, 16(4), 315–330. [Crossref] | Zbl 1179.91085

[33] S. Vanduffel, A. Ahcan, L. Henrard, and M. Maj (2012). An explicit option-based strategy that outperforms Dollar cost averaging. Int. J. Theor. Appl. Finance, 15(2), 1250013. [Crossref] | Zbl 1282.91349

[34] H. Witting (1985). Mathematische Statistik I: Parametrische Verfahren bei festem Stichprobenumfang. B. G. Teubner, Stuttgart.. | Zbl 0581.62001

[35] V. Wolf (2014). Comparison of Markovian Price Processes and Optimality of Payoffs. PhD thesis, University of Freiburg i. Br.. | Zbl 1311.60006

[36] L. Yao, G. Yang, and X. Yang (2011). A note the mean correction martingale measure for geometric Lévy processes. Appl. Math. Lett., 24(5), 593–597. [WoS][Crossref] | Zbl 1210.91139