Some applications of the theory of harmonic integrals
Shin-ichi Matsumura
Complex Manifolds, Tome 2 (2015), / Harvested from The Polish Digital Mathematics Library

In this survey, we present recent techniques on the theory of harmonic integrals to study the cohomology groups of the adjoint bundle with the multiplier ideal sheaf of singular metrics. As an application, we give an analytic version of the injectivity theorem.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:275941
@article{bwmeta1.element.doi-10_1515_coma-2015-0003,
     author = {Shin-ichi Matsumura},
     title = {Some applications of the theory of harmonic integrals},
     journal = {Complex Manifolds},
     volume = {2},
     year = {2015},
     zbl = {06476705},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_coma-2015-0003}
}
Shin-ichi Matsumura. Some applications of the theory of harmonic integrals. Complex Manifolds, Tome 2 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_coma-2015-0003/

[1] J.-P. Demailly. Analytic methods in algebraic geometry. Surveys of Modern Mathematics 1, International Press, Somerville, Higher Education Press, Beijing, (2012).

[2] J.-P. Demailly. Complex analytic and differential geometry. Lecture Notes on the web page of the author.

[3] J.-P. Demailly. Estimations L2 pour l’opérateur @ d’un fibré vectoriel holomorphe semi-positif au-dessus d’une variété kählérienne complète. Ann. Sci. École Norm. Sup(4). 15 (1982), no. 3, 457–511. | Zbl 0507.32021

[4] J.-P. Demailly, T. Peternell, M. Schneider. Pseudo-effective line bundles on compact Kähler manifolds. Internat. J. Math. 12 (2001), no. 6, 689–741. [Crossref] | Zbl 1111.32302

[5] I. Enoki. Kawamata-Viehweg vanishing theorem for compact Kähler manifolds. Einstein metrics and Yang-Mills connections (Sanda, 1990), 59–68. | Zbl 0797.53052

[6] H. Esnault, E. Viehweg. Lectures on vanishing theorems. DMV Seminar, 20. Birkhäuser Verlag, Basel, (1992). | Zbl 0779.14003

[7] O. Fujino. A transcendental approach to Kollár’s injectivity theorem. Osaka J. Math. 49 (2012), no. 3, 833–852. | Zbl 1270.32004

[8] O. Fujino. A transcendental approach to Kollár’s injectivity theorem II. J. Reine Angew. Math. 681 (2013), 149–174. | Zbl 1285.32009

[9] Y. Gongyo, S. Matsumura. Versions of injectivity and extension theorems. Preprint, arXiv:1406.6132v2.

[10] J. Kollár. Higher direct images of dualizing sheaves. I. Ann. of Math. (2) 123 (1986), no. 1, 11–42. | Zbl 0598.14015

[11] S. Matsumura. An injectivity theorem with multiplier ideal sheaves of singular metrics with transcendental singularities. Preprint, arXiv:1308.2033v2.

[12] S. Matsumura. A Nadel vanishing theorem via injectivity theorems. Math. Ann. 359 (2014) no.4, 785–802. [WoS] | Zbl 1327.14092

[13] S. Matsumura. A Nadel vanishing theorem for metrics with minimal singularities on big line bundles. Adv. in Math. 359 (2015), 188–207 [WoS] | Zbl 06441135

[14] T. Ohsawa. On a curvature condition that implies a cohomology injectivity theorem of Kollár-Skoda type. Publ. Res. Inst. Math. Sci. 41 (2005), no. 3, 565–577. | Zbl 1103.32005

[15] K. Takegoshi. On cohomology groups of nef line bundles tensorized with multiplier ideal sheaves on compact Kähler manifolds. Osaka J. Math. 34 (1997), no. 4, 783–802. | Zbl 0895.32008

[16] S. G. Tankeev. On n-dimensional canonically polarized varieties and varieties of fundamental type.Math. USSR-Izv. 5 (1971), no. 1, 29–43.[Crossref] | Zbl 0248.14005