Geodesics in the Heisenberg Group
Piotr Hajłasz ; Scott Zimmerman
Analysis and Geometry in Metric Spaces, Tome 3 (2015), / Harvested from The Polish Digital Mathematics Library

We provide a new and elementary proof for the structure of geodesics in the Heisenberg group Hn. The proof is based on a new isoperimetric inequality for closed curves in R2n.We also prove that the Carnot- Carathéodory metric is real analytic away from the center of the group.

Publié le : 2015-01-01
EUDML-ID : urn:eudml:doc:275961
@article{bwmeta1.element.doi-10_1515_agms-2015-0020,
     author = {Piotr Haj\l asz and Scott Zimmerman},
     title = {Geodesics in the Heisenberg Group},
     journal = {Analysis and Geometry in Metric Spaces},
     volume = {3},
     year = {2015},
     zbl = {1328.53039},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.doi-10_1515_agms-2015-0020}
}
Piotr Hajłasz; Scott Zimmerman. Geodesics in the Heisenberg Group. Analysis and Geometry in Metric Spaces, Tome 3 (2015) . http://gdmltest.u-ga.fr/item/bwmeta1.element.doi-10_1515_agms-2015-0020/

[1] L. Ambrosio, S. Rigot, Optimal mass transportation in the Heisenberg group, J. Funct. Anal. 208 (2004), 261–301. | Zbl 1076.49023

[2] A. Bellaïche, The tangent space in sub-Riemannian geometry, in: A. Bellaïche, J.J. Risler (Eds.), Sub-Riemannian geometry, Progress in Mathematics, Vol. 144, Birkhäuser, Basel, 1996, pp. 1–78. | Zbl 0862.53031

[3] V. N. Berestovskii, Geodesics of nonholonomic left-invariant intrinsic metrics on the Heisenberg group and isoperimetric curves on the Minkowski plane. Siberian Math. J. 35 (1994), 1–8.

[4] D. Burago, Y. Burago, S. Ivanov, A course in metric geometry. Graduate Studies inMathematics, 33. AmericanMathematical Society, Providence, RI, 2001. | Zbl 0981.51016

[5] L. Capogna, S. D. Pauls, D. Danielli, J. T. Tyson, An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem, Progress in Mathematics, Vol. 259. Birkhäuser Basel. 2007. | Zbl 1138.53003

[6] H. Dym, H. P. McKean, Fourier series and integrals. Probability and Mathematical Statistics, No. 14. Academic Press, New York-London, 1972. | Zbl 0242.42001

[7] B. Gaveau, Principe de moindre action, propagation de la chaleur et estimees sous elliptiques sur certains groupes nilpotents. Acta Math. 139 (1977), 95–153.

[8] P. Hajłasz, Sobolev spaces on metric-measure spaces, in Heat kernels and analysis on manifolds, graphs, and metric spaces (Paris, 2002), 173–218, Contemp. Math., 338, Amer. Math. Soc., Providence, RI, 2003. | Zbl 1048.46033

[9] A. Hurwitz, Sur quelques applications géométriques des séries de Fourier, Ann. Ecole Norm. Sup. 19 (1902) 357–408. | Zbl 33.0599.02

[10] S. G. Krantz, H. R. Parks, A primer of real analytic functions. Second edition. Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser Boston, Inc., Boston, MA, 2002.

[11] R. Montgomery, A tour of subriemannian geometries, their geodesics and applications. Mathematical Surveys and Monographs, 91. American Mathematical Society, Providence, RI, 2002. | Zbl 1044.53022

[12] R. Monti, Distances, boundaries and surface measures in Carnot-Carathéodory spaces, PhD thesis 2001. Available at http: //www.math.unipd.it/~monti/PAPERS/TesiFinale.pdf | Zbl 1032.49045

[13] R. Monti, Some properties of Carnot-Carathéodory balls in the Heisenberg group, Rend. MatA˙ cc. Lincei 11 (2000) 155–167. | Zbl 1197.53064

[14] I. J. Schoenberg, An isoperimetric inequality for closed curves convex in even-dimensional Euclidean spaces. Acta Math. 91 (1954), 143–164. | Zbl 0056.15705